» Articles » PMID: 39695276

Estimation of Minimal Data Sets Sizes for Machine Learning Predictions in Digital Mental Health Interventions

Overview
Journal NPJ Digit Med
Date 2024 Dec 18
PMID 39695276
Authors
Affiliations
Soon will be listed here.
Abstract

Artificial intelligence promises to revolutionize mental health care, but small dataset sizes and lack of robust methods raise concerns about result generalizability. To provide insights on minimal necessary data set sizes, we explore domain-specific learning curves for digital intervention dropout predictions based on 3654 users from a single study (ISRCTN13716228, 26/02/2016). Prediction performance is analyzed based on dataset size (N = 100-3654), feature groups (F = 2-129), and algorithm choice (from Naive Bayes to Neural Networks). The results substantiate the concern that small datasets (N ≤ 300) overestimate predictive power. For uninformative feature groups, in-sample prediction performance was negatively correlated with dataset size. Sophisticated models overfitted in small datasets but maximized holdout test results in larger datasets. While N = 500 mitigated overfitting, performance did not converge until N = 750-1500. Consequently, we propose minimum dataset sizes of N = 500-1000. As such, this study offers an empirical reference for researchers designing or interpreting AI studies on Digital Mental Health Intervention data.

Citing Articles

Prediction models for treatment response in migraine: a systematic review and meta-analysis.

Chen Q, Zhang J, Cao B, Hu Y, Kong Y, Li B J Headache Pain. 2025; 26(1):32.

PMID: 39939885 PMC: 11817351. DOI: 10.1186/s10194-025-01972-x.

References
1.
Andaur Navarro C, Damen J, Takada T, Nijman S, Dhiman P, Ma J . Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021; 375:n2281. PMC: 8527348. DOI: 10.1136/bmj.n2281. View

2.
van Smeden M, Moons K, de Groot J, Collins G, Altman D, Eijkemans M . Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat Methods Med Res. 2018; 28(8):2455-2474. PMC: 6710621. DOI: 10.1177/0962280218784726. View

3.
Chekroud A, Hawrilenko M, Loho H, Bondar J, Gueorguieva R, Hasan A . Illusory generalizability of clinical prediction models. Science. 2024; 383(6679):164-167. DOI: 10.1126/science.adg8538. View

4.
Harris C, Millman K, van der Walt S, Gommers R, Virtanen P, Cournapeau D . Array programming with NumPy. Nature. 2020; 585(7825):357-362. PMC: 7759461. DOI: 10.1038/s41586-020-2649-2. View

5.
Bricker J, Miao Z, Mull K, Santiago-Torres M, Vock D . Can a Single Variable Predict Early Dropout From Digital Health Interventions? Comparison of Predictive Models From Two Large Randomized Trials. J Med Internet Res. 2023; 25:e43629. PMC: 9898835. DOI: 10.2196/43629. View