Corrosion Fatigue of As-extruded Mg-xGa Alloys in Simulated Bodily Fluids with Various Glucose Contents
Overview
Authors
Affiliations
The medical devices are subjected to dynamic loads and surrounding physiological condition of the bodily fluids, which will impact the degradation behavior of magnesium (Mg) alloy implants. In this work, the corrosion fatigue (CF) and corrosion behaviors of Mg-xGa (x = 1, 1.5, and 2 wt%) alloys in Hank's balanced salt solutions (HBSS) with 1 g/L and 3 g/L glucose are thoroughly studied. It is concluded that Mg-2Ga alloy exhibits excellent mechanical and fatigue behaviors. Its ultimate tensile strength (UTS) is 234 MPa, yield strength (YS) is 145 MPa, elongation (EL) is 15%, fatigue limits (σ) is 111 MPa in air, 48 MPa in HBSS with 1 g/L glucose, and 66 MPa in HBSS with 3 g/L glucose. The high glucose content in simulated bodily fluids has the function of inhibiting the corrosion reaction of alloy which is favorable to CF.