6.
Zeng L, Zhou M
. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002; 513(1):124-8.
DOI: 10.1016/s0014-5793(01)03309-9.
View
7.
Jaronczyk K, Sosnowska K, Zaborowski A, Pupel P, Bucholc M, Malecka E
. Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for proper functioning of SWI/SNF complexes in . Plant Commun. 2021; 2(4):100174.
PMC: 8299063.
DOI: 10.1016/j.xplc.2021.100174.
View
8.
Suganuma T, Workman J
. Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 2011; 80:473-99.
DOI: 10.1146/annurev-biochem-061809-175347.
View
9.
Robinson M, McCarthy D, Smyth G
. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26(1):139-40.
PMC: 2796818.
DOI: 10.1093/bioinformatics/btp616.
View
10.
Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V
. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot. 2017; 68(13):3287-3301.
DOI: 10.1093/jxb/erx141.
View
11.
Ladurner A, Inouye C, Jain R, Tjian R
. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell. 2003; 11(2):365-76.
DOI: 10.1016/s1097-2765(03)00035-2.
View
12.
Song Q, Huang T, Yu H, Ando A, Mas P, Ha M
. Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis. Genome Biol. 2019; 20(1):170.
PMC: 6892391.
DOI: 10.1186/s13059-019-1777-1.
View
13.
Liu X, Yang S, Zhao M, Luo M, Yu C, Chen C
. Transcriptional repression by histone deacetylases in plants. Mol Plant. 2014; 7(5):764-72.
DOI: 10.1093/mp/ssu033.
View
14.
Qian F, Zhao Q, Zhang T, Li Y, Su Y, Li L
. A histone H3K27me3 reader cooperates with a family of PHD finger-containing proteins to regulate flowering time in Arabidopsis. J Integr Plant Biol. 2021; 63(4):787-802.
DOI: 10.1111/jipb.13067.
View
15.
Bouwmeester K, Govers F
. Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot. 2009; 60(15):4383-96.
DOI: 10.1093/jxb/erp277.
View
16.
Marmorstein R, Zhou M
. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 2014; 6(7):a018762.
PMC: 4067988.
DOI: 10.1101/cshperspect.a018762.
View
17.
Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin S
. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell. 2003; 115(5):523-35.
DOI: 10.1016/s0092-8674(03)00930-9.
View
18.
Earley K, Shook M, Brower-Toland B, Hicks L, Pikaard C
. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J. 2007; 52(4):615-26.
DOI: 10.1111/j.1365-313X.2007.03264.x.
View
19.
Tallant C, Valentini E, Fedorov O, Overvoorde L, Ferguson F, Filippakopoulos P
. Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Structure. 2014; 23(1):80-92.
PMC: 4291147.
DOI: 10.1016/j.str.2014.10.017.
View
20.
Clouaire T, Rocher V, Lashgari A, Arnould C, Aguirrebengoa M, Biernacka A
. Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures. Mol Cell. 2018; 72(2):250-262.e6.
PMC: 6202423.
DOI: 10.1016/j.molcel.2018.08.020.
View