Editorial: Investigating Tumor Immunotherapy Responses in Lung Cancer Using Deep Learning
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Wang M, Herbst R, Boshoff C
. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021; 27(8):1345-1356.
DOI: 10.1038/s41591-021-01450-2.
View
2.
Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K
. Immune signature-based risk stratification and prediction of immune checkpoint inhibitor's efficacy for lung adenocarcinoma. Cancer Immunol Immunother. 2021; 70(6):1705-1719.
PMC: 8139885.
DOI: 10.1007/s00262-020-02817-z.
View
3.
Mikhael P, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami A
. Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography. J Clin Oncol. 2023; 41(12):2191-2200.
PMC: 10419602.
DOI: 10.1200/JCO.22.01345.
View
4.
Song X, Xiong A, Wu F, Li X, Wang J, Jiang T
. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody. J Immunother Cancer. 2023; 11(2).
PMC: 9980352.
DOI: 10.1136/jitc-2022-006234.
View
5.
Chen M, Copley S, Viola P, Lu H, Aboagye E
. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol. 2023; 93:97-113.
DOI: 10.1016/j.semcancer.2023.05.004.
View