» Articles » PMID: 39691722

Editorial: Investigating Tumor Immunotherapy Responses in Lung Cancer Using Deep Learning

Overview
Journal Front Immunol
Date 2024 Dec 18
PMID 39691722
Authors
Affiliations
Soon will be listed here.
References
1.
Wang M, Herbst R, Boshoff C . Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021; 27(8):1345-1356. DOI: 10.1038/s41591-021-01450-2. View

2.
Yi M, Li A, Zhou L, Chu Q, Luo S, Wu K . Immune signature-based risk stratification and prediction of immune checkpoint inhibitor's efficacy for lung adenocarcinoma. Cancer Immunol Immunother. 2021; 70(6):1705-1719. PMC: 8139885. DOI: 10.1007/s00262-020-02817-z. View

3.
Mikhael P, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami A . Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography. J Clin Oncol. 2023; 41(12):2191-2200. PMC: 10419602. DOI: 10.1200/JCO.22.01345. View

4.
Song X, Xiong A, Wu F, Li X, Wang J, Jiang T . Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody. J Immunother Cancer. 2023; 11(2). PMC: 9980352. DOI: 10.1136/jitc-2022-006234. View

5.
Chen M, Copley S, Viola P, Lu H, Aboagye E . Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol. 2023; 93:97-113. DOI: 10.1016/j.semcancer.2023.05.004. View