6.
Wang S, Yang M, Li R, Bai J
. Current advances in noninvasive methods for the diagnosis of oral squamous cell carcinoma: a review. Eur J Med Res. 2023; 28(1):53.
PMC: 9880940.
DOI: 10.1186/s40001-022-00916-4.
View
7.
Chen Z, Huang X, Gao Y, Zeng S, Mao W
. Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation. J Pharm Anal. 2021; 11(4):505-514.
PMC: 8424362.
DOI: 10.1016/j.jpha.2020.11.009.
View
8.
Khan S, Hoque A
. SICE: an improved missing data imputation technique. J Big Data. 2020; 7(1):37.
PMC: 7291187.
DOI: 10.1186/s40537-020-00313-w.
View
9.
An R, Yu H, Wang Y, Lu J, Gao Y, Xie X
. Integrative analysis of plasma metabolomics and proteomics reveals the metabolic landscape of breast cancer. Cancer Metab. 2022; 10(1):13.
PMC: 9382832.
DOI: 10.1186/s40170-022-00289-6.
View
10.
Zhang L, Ma F, Qi A, Liu L, Zhang J, Xu S
. Integration of ultra-high-pressure liquid chromatography-tandem mass spectrometry with machine learning for identifying fatty acid metabolite biomarkers of ischemic stroke. Chem Commun (Camb). 2020; 56(49):6656-6659.
DOI: 10.1039/d0cc02329a.
View
11.
Xu J, Chen Y, Zhang R, Song Y, Cao J, Bi N
. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol Cell Proteomics. 2013; 12(5):1306-18.
PMC: 3650341.
DOI: 10.1074/mcp.M112.022830.
View
12.
Plans-Beriso E, Babb-de-Villiers C, Petrova D, Barahona-Lopez C, Diez-Echave P, Hernandez O
. Biomarkers for personalised prevention of chronic diseases: a common protocol for three rapid scoping reviews. Syst Rev. 2024; 13(1):147.
PMC: 11143646.
DOI: 10.1186/s13643-024-02554-9.
View
13.
Gibellini F, Smith T
. The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010; 62(6):414-28.
DOI: 10.1002/iub.337.
View
14.
Qiang Y, You J, He X, Guo Y, Deng Y, Gao P
. Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274,160 participants. Alzheimers Res Ther. 2024; 16(1):16.
PMC: 10802055.
DOI: 10.1186/s13195-023-01379-3.
View
15.
Faedo R, da Silva G, Da Silva R, Ushida T, da Silva R, Lacchini R
. Sphingolipids signature in plasma and tissue as diagnostic and prognostic tools in oral squamous cell carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids. 2021; 1867(1):159057.
DOI: 10.1016/j.bbalip.2021.159057.
View
16.
Galal A, Talal M, Moustafa A
. Applications of machine learning in metabolomics: Disease modeling and classification. Front Genet. 2022; 13:1017340.
PMC: 9730048.
DOI: 10.3389/fgene.2022.1017340.
View
17.
Mumtaz M, Bijnsdorp I, Bottger F, Piersma S, Pham T, Mumtaz S
. Secreted protein markers in oral squamous cell carcinoma (OSCC). Clin Proteomics. 2022; 19(1):4.
PMC: 8903575.
DOI: 10.1186/s12014-022-09341-5.
View
18.
Song X, Yang X, Narayanan R, Shankar V, Ethiraj S, Wang X
. Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proc Natl Acad Sci U S A. 2020; 117(28):16167-16173.
PMC: 7368296.
DOI: 10.1073/pnas.2001395117.
View
19.
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F
. Biological biomarkers of oral cancer. Periodontol 2000. 2023; 96(1):250-280.
PMC: 11163022.
DOI: 10.1111/prd.12542.
View
20.
Pekarek L, Garrido-Gil M, Sanchez-Cendra A, Cassinello J, Pekarek T, Fraile-Martinez O
. Emerging histological and serological biomarkers in oral squamous cell carcinoma: Applications in diagnosis, prognosis evaluation and personalized therapeutics (Review). Oncol Rep. 2023; 50(6).
PMC: 10620846.
DOI: 10.3892/or.2023.8650.
View