6.
Yin F, Karangwa E, Song S, Duhoranimana E, Lin S, Cui H
. Contribution of tobacco composition compounds to characteristic aroma of Chinese faint-scent cigarettes through chromatography analysis and partial least squares regression. J Chromatogr B Analyt Technol Biomed Life Sci. 2019; 1105:217-227.
DOI: 10.1016/j.jchromb.2018.12.001.
View
7.
Ou M, Lou J, Lao L, Guo Y, Pan D, Yang H
. Plant-based meat analogue of soy proteins by the multi-strain solid-state mixing fermentation. Food Chem. 2023; 414:135671.
DOI: 10.1016/j.foodchem.2023.135671.
View
8.
Zhou Q, Li Q, Li P, Zhang S, Liu C, Jin J
. Carotenoid Cleavage Dioxygenases: Identification, Expression, and Evolutionary Analysis of This Gene Family in Tobacco. Int J Mol Sci. 2019; 20(22).
PMC: 6888377.
DOI: 10.3390/ijms20225796.
View
9.
Allahkarami S, Sepahi A, Hosseini H, Razavi M
. Isolation and identification of carotenoid-producing sp. from Pinaceae forest ecosystems and optimization of carotenoid production. Biotechnol Rep (Amst). 2021; 32:e00687.
PMC: 8593566.
DOI: 10.1016/j.btre.2021.e00687.
View
10.
Slaghenaufi D, Ugliano M
. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine. Front Chem. 2018; 6:66.
PMC: 5867301.
DOI: 10.3389/fchem.2018.00066.
View
11.
Jia Y, Zhou W, Yang Z, Zhou Q, Wang Y, Liu Y
. A critical assessment of the strains isolated from cigar tobacco leaves. Front Bioeng Biotechnol. 2023; 11:1201957.
PMC: 10485251.
DOI: 10.3389/fbioe.2023.1201957.
View
12.
Grondin E, Sing A, Caro Y, Raherimandimby M, Randrianierenana A, James S
. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds. Int J Food Microbiol. 2015; 203:101-8.
DOI: 10.1016/j.ijfoodmicro.2015.02.032.
View
13.
Popova V, Ivanova T, Prokopov T, Nikolova M, Stoyanova A, Zheljazkov V
. Carotenoid-Related Volatile Compounds of Tobacco ( L.) Essential Oils. Molecules. 2019; 24(19).
PMC: 6804150.
DOI: 10.3390/molecules24193446.
View
14.
Wang X, Wang B, Song Z, Zhao L, Ruan W, Gao Y
. A spatial-temporal understanding of gene regulatory networks and NtARF-mediated regulation of potassium accumulation in tobacco. Planta. 2021; 255(1):9.
DOI: 10.1007/s00425-021-03790-2.
View
15.
Wu Q, Peng Z, Pan Y, Liu L, Li L, Zhang J
. Interaction analysis of tobacco leaf microbial community structure and volatiles flavor compounds during cigar stacking fermentation. Front Microbiol. 2023; 14:1168122.
PMC: 10457113.
DOI: 10.3389/fmicb.2023.1168122.
View
16.
Hu W, Cai W, Jia Y, Fan J, Zhu B, Zhang Q
. Sensory attributes, chemical and microbiological properties of cigars aged with different media. Front Bioeng Biotechnol. 2023; 11:1294667.
PMC: 10628719.
DOI: 10.3389/fbioe.2023.1294667.
View
17.
Wu X, Zhu P, Li D, Zheng T, Cai W, Li J
. Bioaugmentation of Bacillus amyloliquefaciens-Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Arch Microbiol. 2021; 203(9):5723-5733.
DOI: 10.1007/s00203-021-02556-4.
View
18.
Rodriguez A, Ersig N, Geiselman G, Seibel K, Simmons B, Magnuson J
. Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts. Bioresour Technol. 2019; 286:121365.
DOI: 10.1016/j.biortech.2019.121365.
View
19.
Czajka J, Nathenson J, Benites V, Baidoo E, Cheng Q, Wang Y
. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Microb Cell Fact. 2018; 17(1):136.
PMC: 6119263.
DOI: 10.1186/s12934-018-0984-x.
View
20.
Zheng T, Zhang Q, Peng Z, Li D, Wu X, Liu Y
. Metabolite-based cell sorting workflow for identifying microbes producing carbonyls in tobacco leaves. Appl Microbiol Biotechnol. 2022; 106(11):4199-4209.
DOI: 10.1007/s00253-022-11982-3.
View