» Articles » PMID: 39687913

Enhancing Mortality Prediction in Patients with Spontaneous Intracerebral Hemorrhage: Radiomics and Supervised Machine Learning on Non-contrast Computed Tomography

Overview
Specialty Radiology
Date 2024 Dec 17
PMID 39687913
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: This study aims to develop a Radiomics-based Supervised Machine-Learning model to predict mortality in patients with spontaneous intracerebral hemorrhage (sICH).

Methods: Retrospective analysis of a prospectively collected clinical registry of patients with sICH consecutively admitted at a single academic comprehensive stroke center between January-2016 and April-2018. We conducted an in-depth analysis of 105 radiomic features extracted from 105 patients. Following the identification and handling of missing values, radiomics values were scaled to 0-1 to train different classifiers. The sample was split into 80-20 % training-test and validation cohort in a stratified fashion. Random Forest(RF), K-Nearest Neighbor(KNN), and Support Vector Machine(SVM) classifiers were evaluated, along with several feature selection methods and hyperparameter optimization strategies, to classify the binary outcome of mortality or survival during hospital admission. A tenfold stratified cross-validation method was used to train the models, and average metrics were calculated.

Results: RF, KNN, and SVM, with the "DropOut+SelectKBest" feature selection strategy and no hyperparameter optimization, demonstrated the best performances with the least number of radiomic features and the most simplified models, achieving a sensitivity range between 0.90 and 0.95 and AUC range from 0.97 to 1 on the validation dataset. Regarding the confusion matrix, the SVM model did not predict any false negative test (negative predicted value 1).

Conclusion: Radiomics-based Supervised Machine Learning models can predict mortality during admission in patients with sICH. SVM with the "DropOut+SelectKBest" feature selection strategy and no hyperparameter optimization was the best simplified model to detect mortality during admission in patients with sICH.

References
1.
Xu X, Zhang J, Yang K, Wang Q, Chen X, Xu B . Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning. Brain Behav. 2021; 11(5):e02085. PMC: 8119849. DOI: 10.1002/brb3.2085. View

2.
Shen Q, Shan Y, Hu Z, Chen W, Yang B, Han J . Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement. Eur Radiol. 2018; 28(10):4389-4396. DOI: 10.1007/s00330-018-5364-8. View

3.
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J, Pujol S . 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30(9):1323-41. PMC: 3466397. DOI: 10.1016/j.mri.2012.05.001. View

4.
Li Q, Yang W, Wang X, Cao D, Zhu D, Lv F . Blend sign predicts poor outcome in patients with intracerebral hemorrhage. PLoS One. 2017; 12(8):e0183082. PMC: 5568736. DOI: 10.1371/journal.pone.0183082. View

5.
Hemphill 3rd J, Greenberg S, Anderson C, Becker K, Bendok B, Cushman M . Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015; 46(7):2032-60. DOI: 10.1161/STR.0000000000000069. View