Covalent Adaptable Networks from Polyacrylates Based on Oxime-Urethane Bond Exchange Reaction
Overview
Chemistry
Molecular Biology
Authors
Affiliations
Covalent adaptable networks (CANs) are polymer networks cross-linked via dynamic covalent bonds that can proceed with bond exchange reactions upon applying external stimuli. In this report, a series of cross-linked polyacrylate films were fabricated by changing the combination of acrylate monomer and the amount of diacrylate cross-linker possessing oxime-urethane bonds as a kind of dynamic covalent bond to evaluate their rheological relaxation properties. Model analysis of the experimental relaxation curves of cross-linked polyacrylate films was conducted by assuming that they consist of two types of relaxation, one of which is related to the oxime-urethane bond exchange reaction, and another of which is associated with the melting of the aggregated cross-linker. It was found that the contribution from the relaxation due to the bond exchange reaction becomes dominant only when the normal-alkyl acrylates are used as a monomer. The relaxation time was almost constant even when the amount of the cross-linker was adjusted. Moreover, it was also indicated that the miscibility of the cross-linker is very important for the fabrication of CANs with good self-healing ability and reprocessability.