6.
Hummel I, Bourdais G, Gouesbet G, Couee I, Malmberg R, El Amrani A
. Differential gene expression of ARGININE DECARBOXYLASE ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. New Phytol. 2021; 163(3):519-531.
DOI: 10.1111/j.1469-8137.2004.01128.x.
View
7.
Borromeo I, Domenici F, Del Gallo M, Forni C
. Role of Polyamines in the Response to Salt Stress of Tomato. Plants (Basel). 2023; 12(9).
PMC: 10181493.
DOI: 10.3390/plants12091855.
View
8.
He X, Hao J, Fan S, Liu C, Han Y
. Role of Spermidine in Photosynthesis and Polyamine Metabolism in Lettuce Seedlings under High-Temperature Stress. Plants (Basel). 2022; 11(10).
PMC: 9146551.
DOI: 10.3390/plants11101385.
View
9.
Lechowska K, Wojtyla L, Quinet M, Kubala S, Lutts S, Garnczarska M
. Endogenous Polyamines and Ethylene Biosynthesis in Relation to Germination of Osmoprimed Seeds under Salt Stress. Int J Mol Sci. 2022; 23(1).
PMC: 8745725.
DOI: 10.3390/ijms23010349.
View
10.
Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse C, Pozo M
. Recognizing Plant Defense Priming. Trends Plant Sci. 2016; 21(10):818-822.
DOI: 10.1016/j.tplants.2016.07.009.
View
11.
ElSayed A, Mohamed A, Rafudeen M, Omar A, Awad M, Mansour E
. Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed ( L.). Saudi J Biol Sci. 2022; 29(5):3675-3686.
PMC: 9280241.
DOI: 10.1016/j.sjbs.2022.02.053.
View
12.
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C
. Seed germination and vigor. Annu Rev Plant Biol. 2011; 63:507-33.
DOI: 10.1146/annurev-arplant-042811-105550.
View
13.
Fuchs H, Plitta-Michalak B, Malecka A, Ciszewska L, Sikorski L, Staszak A
. The chances in the redox priming of nondormant recalcitrant seeds by spermidine. Tree Physiol. 2023; 43(7):1142-1158.
PMC: 10335849.
DOI: 10.1093/treephys/tpad036.
View
14.
Harris C, Amtmann A, Ton J
. Epigenetic processes in plant stress priming: Open questions and new approaches. Curr Opin Plant Biol. 2023; 75:102432.
DOI: 10.1016/j.pbi.2023.102432.
View
15.
Johnson R, Puthur J
. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol Biochem. 2021; 162:247-257.
DOI: 10.1016/j.plaphy.2021.02.034.
View
16.
Zhao J, Wang X, Pan X, Jiang Q, Xi Z
. Exogenous Putrescine Alleviates Drought Stress by Altering Reactive Oxygen Species Scavenging and Biosynthesis of Polyamines in the Seedlings of Cabernet Sauvignon. Front Plant Sci. 2021; 12:767992.
PMC: 8712750.
DOI: 10.3389/fpls.2021.767992.
View
17.
Yariuchi Y, Okamoto T, Noutoshi Y, Takahashi T
. Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings. Cells. 2021; 10(12).
PMC: 8699553.
DOI: 10.3390/cells10123283.
View
18.
Stassinos P, Rossi M, Borromeo I, Capo C, Beninati S, Forni C
. Enhancement of Tolerance to High Saline Conditions by Seed Priming. Plants (Basel). 2021; 10(2).
PMC: 7923807.
DOI: 10.3390/plants10020403.
View
19.
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M
. Versatile roles of polyamines in improving abiotic stress tolerance of plants. Front Plant Sci. 2022; 13:1003155.
PMC: 9606767.
DOI: 10.3389/fpls.2022.1003155.
View
20.
Chen D, Shao Q, Yin L, Younis A, Zheng B
. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front Plant Sci. 2019; 9:1945.
PMC: 6335389.
DOI: 10.3389/fpls.2018.01945.
View