6.
Ogawa K, Tsubono Y, Nishino Y, Watanabe Y, Ohkubo T, Watanabe T
. Inter- and intra-individual variation of food and nutrient consumption in a rural Japanese population. Eur J Clin Nutr. 1999; 53(10):781-5.
DOI: 10.1038/sj.ejcn.1600845.
View
7.
Gregoric M, Kotnik K, Pigac I, Gabrijelcic Blenkus M
. A Web-Based 24-H Dietary Recall Could Be a Valid Tool for the Indicative Assessment of Dietary Intake in Older Adults Living in Slovenia. Nutrients. 2019; 11(9).
PMC: 6770526.
DOI: 10.3390/nu11092234.
View
8.
Hose Y, Ishihara J, Kotemori A, Nakadate M, Maruya S, Tanaka J
. Applicability of a Web-based 24-hour Dietary Recall Tool for Japanese Populations in Large-scale Epidemiological Studies. J Epidemiol. 2022; 33(8):419-427.
PMC: 10319522.
DOI: 10.2188/jea.JE20220071.
View
9.
Orfanos P, Naska A, Trichopoulos D, Slimani N, Ferrari P, van Bakel M
. Eating out of home and its correlates in 10 European countries. The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr. 2007; 10(12):1515-25.
DOI: 10.1017/S1368980007000171.
View
10.
Stote K, Radecki S, Moshfegh A, Ingwersen L, Baer D
. The number of 24 h dietary recalls using the US Department of Agriculture's automated multiple-pass method required to estimate nutrient intake in overweight and obese adults. Public Health Nutr. 2011; 14(10):1736-42.
DOI: 10.1017/S1368980011000358.
View
11.
Shinozaki N, Yuan X, Murakami K, Sasaki S
. Development, validation and utilisation of dish-based dietary assessment tools: a scoping review. Public Health Nutr. 2020; 24(2):223-242.
PMC: 7808862.
DOI: 10.1017/S136898002000172X.
View
12.
Schatzkin A, Subar A, Moore S, Park Y, Potischman N, Thompson F
. Observational epidemiologic studies of nutrition and cancer: the next generation (with better observation). Cancer Epidemiol Biomarkers Prev. 2009; 18(4):1026-32.
PMC: 2688809.
DOI: 10.1158/1055-9965.EPI-08-1129.
View
13.
Ma L, Hu Y, Alperet D, Liu G, Malik V, Manson J
. Beverage consumption and mortality among adults with type 2 diabetes: prospective cohort study. BMJ. 2023; 381:e073406.
PMC: 10114037.
DOI: 10.1136/bmj-2022-073406.
View
14.
Bland J, Altman D
. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1(8476):307-10.
View
15.
Meijboom S, van Houts-Streppel M, Perenboom C, Siebelink E, van de Wiel A, Geelen A
. Evaluation of dietary intake assessed by the Dutch self-administered web-based dietary 24-h recall tool (Compl-eat™) against interviewer-administered telephone-based 24-h recalls. J Nutr Sci. 2017; 6:e49.
PMC: 5672320.
DOI: 10.1017/jns.2017.45.
View
16.
Tokudome Y, Imaeda N, Nagaya T, Ikeda M, Fujiwara N, Sato J
. Daily, weekly, seasonal, within- and between-individual variation in nutrient intake according to four season consecutive 7 day weighed diet records in Japanese female dietitians. J Epidemiol. 2002; 12(2):85-92.
PMC: 10468340.
DOI: 10.2188/jea.12.85.
View
17.
Katagiri R, Asakura K, Sasaki S, Hirota N, Notsu A, Miura A
. Estimation of habitual iodine intake in Japanese adults using 16 d diet records over four seasons with a newly developed food composition database for iodine. Br J Nutr. 2015; 114(4):624-34.
DOI: 10.1017/S0007114515002019.
View
18.
Timon C, van den Barg R, Blain R, Kehoe L, Evans K, Walton J
. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutr Res Rev. 2016; 29(2):268-280.
DOI: 10.1017/S0954422416000172.
View
19.
Illner A, Freisling H, Boeing H, Huybrechts I, Crispim S, Slimani N
. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol. 2012; 41(4):1187-203.
DOI: 10.1093/ije/dys105.
View
20.
Gazan R, Vieux F, Mora S, Havard S, Dubuisson C
. Potential of existing online 24-h dietary recall tools for national dietary surveys. Public Health Nutr. 2021; 24(16):5361-5386.
PMC: 10195606.
DOI: 10.1017/S1368980021003517.
View