6.
De Vleesschauwer D, Yang Y, Vera Cruz C, Hofte M
. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 2010; 152(4):2036-52.
PMC: 2850001.
DOI: 10.1104/pp.109.152702.
View
7.
Kim E, Lee D, Lee K, Jung S, Jeon J, Kim H
. Conserved Function of Fibrillin5 in the Plastoquinone-9 Biosynthetic Pathway in Arabidopsis and Rice. Front Plant Sci. 2017; 8:1197.
PMC: 5507956.
DOI: 10.3389/fpls.2017.01197.
View
8.
Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y
. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact. 2007; 20(5):492-9.
DOI: 10.1094/MPMI-20-5-0492.
View
9.
Ophir R, Graur D
. Patterns and rates of indel evolution in processed pseudogenes from humans and murids. Gene. 1998; 205(1-2):191-202.
DOI: 10.1016/s0378-1119(97)00398-3.
View
10.
Lundquist P, Poliakov A, Bhuiyan N, Zybailov B, Sun Q, van Wijk K
. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol. 2012; 158(3):1172-92.
PMC: 3291262.
DOI: 10.1104/pp.111.193144.
View
11.
Youssef A, Laizet Y, Block M, Marechal E, Alcaraz J, Larson T
. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J. 2009; 61(3):436-45.
DOI: 10.1111/j.1365-313X.2009.04067.x.
View
12.
Van Bockhaven J, Spichal L, Novak O, Strnad M, Asano T, Kikuchi S
. Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol. 2015; 206(2):761-73.
DOI: 10.1111/nph.13270.
View
13.
Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang L
. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Proteomics. 2014; 14(9):1088-101.
DOI: 10.1002/pmic.201300104.
View
14.
Spoel S, Johnson J, Dong X
. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A. 2007; 104(47):18842-7.
PMC: 2141864.
DOI: 10.1073/pnas.0708139104.
View
15.
Kim I, Kim H
. The mysterious role of fibrillin in plastid metabolism: current advances in understanding. J Exp Bot. 2022; 73(9):2751-2764.
DOI: 10.1093/jxb/erac087.
View
16.
Lee K, Lehmann M, Paul M, Wang L, Luckner M, Wanner G
. Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism. New Phytol. 2019; 225(4):1715-1731.
DOI: 10.1111/nph.16246.
View
17.
Li J, Yang J, Zhu B, Xie G
. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice. Plant Sci. 2019; 285:230-238.
DOI: 10.1016/j.plantsci.2019.05.007.
View
18.
Wang D, Fan J, Siao C, Berno A, Young P, Sapolsky R
. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998; 280(5366):1077-82.
DOI: 10.1126/science.280.5366.1077.
View
19.
Mamaeva A, Taliansky M, Filippova A, Love A, Golub N, Fesenko I
. The role of chloroplast protein remodeling in stress responses and shaping of the plant peptidome. New Phytol. 2020; 227(5):1326-1334.
DOI: 10.1111/nph.16620.
View
20.
Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S
. SNP markers and their impact on plant breeding. Int J Plant Genomics. 2013; 2012:728398.
PMC: 3536327.
DOI: 10.1155/2012/728398.
View