6.
Knowles M, Boucher R
. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002; 109(5):571-7.
PMC: 150901.
DOI: 10.1172/JCI15217.
View
7.
Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer H
. The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol. 2010; 2010:402593.
PMC: 2836178.
DOI: 10.1155/2010/402593.
View
8.
Wang Y, Ninaber D, van Schadewijk A, Hiemstra P
. Tiotropium and Fluticasone Inhibit Rhinovirus-Induced Mucin Production via Multiple Mechanisms in Differentiated Airway Epithelial Cells. Front Cell Infect Microbiol. 2020; 10:278.
PMC: 7318795.
DOI: 10.3389/fcimb.2020.00278.
View
9.
Gagliardi T, Goldstein M, Song D, Gray K, Jung J, Ignacio M
. Rhinovirus C replication is associated with the endoplasmic reticulum and triggers cytopathic effects in an in vitro model of human airway epithelium. PLoS Pathog. 2022; 18(1):e1010159.
PMC: 8741012.
DOI: 10.1371/journal.ppat.1010159.
View
10.
Schneeberger E, Lynch R
. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004; 286(6):C1213-28.
DOI: 10.1152/ajpcell.00558.2003.
View
11.
Kwak B, Pepper M, Gros D, Meda P
. Inhibition of endothelial wound repair by dominant negative connexin inhibitors. Mol Biol Cell. 2001; 12(4):831-45.
PMC: 32270.
DOI: 10.1091/mbc.12.4.831.
View
12.
Monto A, Shope T, Schwartz S, Albrecht J
. Intranasal interferon-alpha 2b for seasonal prophylaxis of respiratory infection. J Infect Dis. 1986; 154(1):128-33.
PMC: 7109820.
DOI: 10.1093/infdis/154.1.128.
View
13.
Ilyushina N, Donnelly R
. In vitro anti-influenza A activity of interferon (IFN)-λ1 combined with IFN-β or oseltamivir carboxylate. Antiviral Res. 2014; 111:112-20.
DOI: 10.1016/j.antiviral.2014.09.008.
View
14.
Yuta A, Doyle W, GAUMOND E, Ali M, Tamarkin L, Baraniuk J
. Rhinovirus infection induces mucus hypersecretion. Am J Physiol. 1998; 274(6):L1017-23.
DOI: 10.1152/ajplung.1998.274.6.L1017.
View
15.
Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C
. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179:104811.
PMC: 7188648.
DOI: 10.1016/j.antiviral.2020.104811.
View
16.
Sajjan U, Wang Q, Zhao Y, Gruenert D, Hershenson M
. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med. 2008; 178(12):1271-81.
PMC: 2599868.
DOI: 10.1164/rccm.200801-136OC.
View
17.
Gaajetaan G, Geelen T, Vernooy J, Dentener M, Reynaert N, Rohde G
. Interferon-β induces a long-lasting antiviral state in human respiratory epithelial cells. J Infect. 2012; 66(2):163-9.
DOI: 10.1016/j.jinf.2012.11.008.
View
18.
Tash B, Bewley M, Russo M, Keil J, Griffin K, Sundstrom J
. The occludin and ZO-1 complex, defined by small angle X-ray scattering and NMR, has implications for modulating tight junction permeability. Proc Natl Acad Sci U S A. 2012; 109(27):10855-60.
PMC: 3390843.
DOI: 10.1073/pnas.1121390109.
View
19.
Linfield D, Raduka A, Aghapour M, Rezaee F
. Airway tight junctions as targets of viral infections. Tissue Barriers. 2021; 9(2):1883965.
PMC: 8078511.
DOI: 10.1080/21688370.2021.1883965.
View
20.
Koppe U, Hogner K, Doehn J, Muller H, Witzenrath M, Gutbier B
. Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. J Immunol. 2011; 188(2):811-7.
DOI: 10.4049/jimmunol.1004143.
View