6.
Dumont S, Mitchison T
. Force and length in the mitotic spindle. Curr Biol. 2009; 19(17):R749-61.
PMC: 2791830.
DOI: 10.1016/j.cub.2009.07.028.
View
7.
Strom A, Biggs R, Banigan E, Wang X, Chiu K, Herman C
. HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. Elife. 2021; 10.
PMC: 8233041.
DOI: 10.7554/eLife.63972.
View
8.
Gibeaux R, Acker R, Kitaoka M, Georgiou G, van Kruijsbergen I, Ford B
. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature. 2018; 553(7688):337-341.
PMC: 5988642.
DOI: 10.1038/nature25188.
View
9.
Fukuyama T, Yan L, Tanaka M, Yamaoka M, Saito K, Ti S
. Morphological growth dynamics, mechanical stability, and active microtubule mechanics underlying spindle self-organization. Proc Natl Acad Sci U S A. 2022; 119(44):e2209053119.
PMC: 9636915.
DOI: 10.1073/pnas.2209053119.
View
10.
Bezanilla M, Wadsworth P
. Spindle positioning: actin mediates pushing and pulling. Curr Biol. 2009; 19(4):R168-9.
PMC: 2848404.
DOI: 10.1016/j.cub.2008.12.026.
View
11.
Busson S, Dujardin D, Moreau A, Dompierre J, De Mey J
. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr Biol. 1998; 8(9):541-4.
DOI: 10.1016/s0960-9822(98)70208-8.
View
12.
Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A
. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature. 1996; 382(6590):420-5.
DOI: 10.1038/382420a0.
View
13.
Salmon E, Wolniak S
. Taxol stabilization of mitotic spindle microtubules: analysis using calcium-induced depolymerization. Cell Motil. 1984; 4(3):155-67.
DOI: 10.1002/cm.970040302.
View
14.
Park D, Rose L
. Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning. Dev Biol. 2008; 315(1):42-54.
PMC: 2372164.
DOI: 10.1016/j.ydbio.2007.11.037.
View
15.
Yi K, Rubinstein B, Unruh J, Guo F, Slaughter B, Li R
. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J Cell Biol. 2013; 200(5):567-76.
PMC: 3587830.
DOI: 10.1083/jcb.201211068.
View
16.
Lohka M, Maller J
. Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol. 1985; 101(2):518-23.
PMC: 2113692.
DOI: 10.1083/jcb.101.2.518.
View
17.
Duan X, Li Y, Yi K, Guo F, Wang H, Wu P
. Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes. Nat Commun. 2020; 11(1):277.
PMC: 6959240.
DOI: 10.1038/s41467-019-14068-3.
View
18.
Shimamoto Y, Kapoor T
. Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts. Nat Protoc. 2012; 7(5):959-69.
PMC: 4117203.
DOI: 10.1038/nprot.2012.033.
View
19.
Halet G, Carroll J
. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell. 2007; 12(2):309-17.
DOI: 10.1016/j.devcel.2006.12.010.
View
20.
Desai A, Murray A, Mitchison T, Walczak C
. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 1999; 61:385-412.
DOI: 10.1016/s0091-679x(08)61991-3.
View