6.
Wang Q, Guo X, Li L, Gao Z, Su X, Ji M
. N-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020; 11(10):911.
PMC: 7585578.
DOI: 10.1038/s41419-020-03071-y.
View
7.
Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G
. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/ BAI1 signaling pathway. Angiogenesis. 2020; 23(3):325-338.
DOI: 10.1007/s10456-020-09707-z.
View
8.
Mennerich D, Kubaichuk K, Kietzmann T
. DUBs, Hypoxia, and Cancer. Trends Cancer. 2019; 5(10):632-653.
DOI: 10.1016/j.trecan.2019.08.005.
View
9.
Haq S, Suresh B, Ramakrishna S
. Deubiquitylating enzymes as cancer stem cell therapeutics. Biochim Biophys Acta Rev Cancer. 2017; 1869(1):1-10.
DOI: 10.1016/j.bbcan.2017.10.004.
View
10.
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X
. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022; 7(1):3.
PMC: 8724284.
DOI: 10.1038/s41392-021-00762-6.
View
11.
Fang Y, Shen Z, Zhan Y, Feng X, Chen K, Li Y
. CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun. 2019; 10(1):3981.
PMC: 6726635.
DOI: 10.1038/s41467-019-11662-3.
View
12.
Yang F, Liu Y, Xiao J, Li B, Chen Y, Hu A
. Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15. Cell Prolif. 2022; 56(1):e13344.
DOI: 10.1111/cpr.13344.
View
13.
DeWaal D, Nogueira V, Terry A, Patra K, Jeon S, Guzman G
. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 2018; 9(1):446.
PMC: 5792493.
DOI: 10.1038/s41467-017-02733-4.
View
14.
Cai K, Chen S, Zhu C, Li L, Yu C, He Z
. FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis. Cell Death Dis. 2022; 13(9):765.
PMC: 9440910.
DOI: 10.1038/s41419-022-05213-w.
View
15.
Ritter J, Bielack S
. Osteosarcoma. Ann Oncol. 2010; 21 Suppl 7:vii320-5.
DOI: 10.1093/annonc/mdq276.
View
16.
Bao C, Zhu S, Song K, He C
. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun Signal. 2022; 20(1):132.
PMC: 9426234.
DOI: 10.1186/s12964-022-00943-y.
View
17.
de Souza A, Justo G, de Araujo D, Cavagis A
. Defining the molecular basis of tumor metabolism: a continuing challenge since Warburg's discovery. Cell Physiol Biochem. 2011; 28(5):771-92.
DOI: 10.1159/000335792.
View
18.
Gennaro V, Stanek T, Peck A, Sun Y, Wang F, Qie S
. Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells. Proc Natl Acad Sci U S A. 2018; 115(40):E9298-E9307.
PMC: 6176615.
DOI: 10.1073/pnas.1807704115.
View
19.
Glinsky G, Berezovska O, Glinskii A
. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005; 115(6):1503-21.
PMC: 1136989.
DOI: 10.1172/JCI23412.
View
20.
Kim D, Hong A, Park H, Shin W, Yoo L, Jeon S
. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol. 2017; 232(12):3664-3676.
DOI: 10.1002/jcp.25841.
View