6.
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M
. Free Fatty Acid Receptors in Health and Disease. Physiol Rev. 2019; 100(1):171-210.
DOI: 10.1152/physrev.00041.2018.
View
7.
Olm M, Bhattacharya N, Crits-Christoph A, Firek B, Baker R, Song Y
. Necrotizing enterocolitis is preceded by increased gut bacterial replication, , and fimbriae-encoding bacteria. Sci Adv. 2019; 5(12):eaax5727.
PMC: 6905865.
DOI: 10.1126/sciadv.aax5727.
View
8.
Alcon-Giner C, Dalby M, Caim S, Ketskemety J, Shaw A, Sim K
. Microbiota Supplementation with and Modifies the Preterm Infant Gut Microbiota and Metabolome: An Observational Study. Cell Rep Med. 2020; 1(5):100077.
PMC: 7453906.
DOI: 10.1016/j.xcrm.2020.100077.
View
9.
Pammi M, Cope J, Tarr P, Warner B, Morrow A, Mai V
. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome. 2017; 5(1):31.
PMC: 5343300.
DOI: 10.1186/s40168-017-0248-8.
View
10.
Macia L, Tan J, Vieira A, Leach K, Stanley D, Luong S
. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015; 6:6734.
DOI: 10.1038/ncomms7734.
View
11.
Gustafsson J, Johansson M
. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol. 2022; 19(12):785-803.
DOI: 10.1038/s41575-022-00675-x.
View
12.
Blum L, Vincent D, Boettcher M, Knopf J
. Immunological aspects of necrotizing enterocolitis models: a review. Front Immunol. 2024; 15:1434281.
PMC: 11298363.
DOI: 10.3389/fimmu.2024.1434281.
View
13.
Collado M, Cernada M, Neu J, Perez-Martinez G, Gormaz M, Vento M
. Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants. Pediatr Res. 2015; 77(6):726-31.
DOI: 10.1038/pr.2015.54.
View
14.
Bauer P, Duca F, Waise T, Dranse H, Rasmussen B, Puri A
. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis. Cell Metab. 2018; 27(3):572-587.e6.
DOI: 10.1016/j.cmet.2018.01.013.
View
15.
Liu X, Du T, Gao X, Zhao W, Wang Z, He Y
. Gut microbiota and short-chain fatty acids may be new biomarkers for predicting neonatal necrotizing enterocolitis: A pilot study. Front Microbiol. 2022; 13:969656.
PMC: 9428482.
DOI: 10.3389/fmicb.2022.969656.
View
16.
De Filippis F, Pasolli E, Ercolini D
. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol Rev. 2020; 44(4):454-489.
PMC: 7391071.
DOI: 10.1093/femsre/fuaa015.
View
17.
Pan L, Ren Z, Yang J, Li B, Huang Y, Song D
. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm Sin B. 2023; 13(10):4202-4216.
PMC: 10547962.
DOI: 10.1016/j.apsb.2023.08.002.
View
18.
Hui Y, Smith B, Steen Mortensen M, Krych L, Sorensen S, Greisen G
. The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes. 2021; 13(1):1951113.
PMC: 8284123.
DOI: 10.1080/19490976.2021.1951113.
View
19.
Li B, Lee C, Chuslip S, Lee D, Biouss G, Wu R
. Intestinal epithelial tight junctions and permeability can be rescued through the regulation of endoplasmic reticulum stress by amniotic fluid stem cells during necrotizing enterocolitis. FASEB J. 2020; 35(1):e21265.
DOI: 10.1096/fj.202001426R.
View
20.
Cuna A, Morowitz M, Ahmed I, Umar S, Sampath V
. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021; 320(4):G411-G419.
PMC: 8238167.
DOI: 10.1152/ajpgi.00399.2020.
View