6.
Pennebaker J, Seagal J
. Forming a story: the health benefits of narrative. J Clin Psychol. 2000; 55(10):1243-54.
DOI: 10.1002/(SICI)1097-4679(199910)55:10<1243::AID-JCLP6>3.0.CO;2-N.
View
7.
Seabrook E, Kern M, Fulcher B, Rickard N
. Predicting Depression From Language-Based Emotion Dynamics: Longitudinal Analysis of Facebook and Twitter Status Updates. J Med Internet Res. 2018; 20(5):e168.
PMC: 5964306.
DOI: 10.2196/jmir.9267.
View
8.
Ricard B, Marsch L, Crosier B, Hassanpour S
. Exploring the Utility of Community-Generated Social Media Content for Detecting Depression: An Analytical Study on Instagram. J Med Internet Res. 2018; 20(12):e11817.
PMC: 6302231.
DOI: 10.2196/11817.
View
9.
Robbins M, Focella E, Kasle S, Lopez A, Weihs K, Mehl M
. Naturalistically observed swearing, emotional support, and depressive symptoms in women coping with illness. Health Psychol. 2011; 30(6):789-92.
PMC: 3193870.
DOI: 10.1037/a0023431.
View
10.
Kelley S, Mhaonaigh C, Burke L, Whelan R, Gillan C
. Machine learning of language use on Twitter reveals weak and non-specific predictions. NPJ Digit Med. 2022; 5(1):35.
PMC: 8956571.
DOI: 10.1038/s41746-022-00576-y.
View
11.
Cavazos-Rehg P, Krauss M, Sowles S, Connolly S, Rosas C, Bharadwaj M
. A content analysis of depression-related Tweets. Comput Human Behav. 2015; 54:351-357.
PMC: 4574287.
DOI: 10.1016/j.chb.2015.08.023.
View
12.
Shankar K, Chandrasekaran R, Jeripity Venkata P, Miketinas D
. Investigating the Role of Nutrition in Enhancing Immunity During the COVID-19 Pandemic: Twitter Text-Mining Analysis. J Med Internet Res. 2023; 25:e47328.
PMC: 10366666.
DOI: 10.2196/47328.
View
13.
Vaeth P, Ramisetty-Mikler S, Caetano R
. Depression among couples in the United States in the context of intimate partner violence. J Interpers Violence. 2009; 25(5):771-90.
PMC: 2909755.
DOI: 10.1177/0886260509336957.
View
14.
Barglow P
. Self-disclosure in psychotherapy. Am J Psychother. 2005; 59(2):83-99.
DOI: 10.1176/appi.psychotherapy.2005.59.2.83.
View
15.
Birnbaum M, Ernala S, Rizvi A, De Choudhury M, Kane J
. A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals. J Med Internet Res. 2017; 19(8):e289.
PMC: 5575421.
DOI: 10.2196/jmir.7956.
View
16.
Zubaran C, Schumacher M, Roxo M, Foresti K
. Screening tools for postpartum depression: validity and cultural dimensions. Afr J Psychiatry (Johannesbg). 2011; 13(5):357-65.
DOI: 10.4314/ajpsy.v13i5.63101.
View
17.
Meng Y, Speier W, Ong M, Arnold C
. Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression. IEEE J Biomed Health Inform. 2021; 25(8):3121-3129.
PMC: 8606118.
DOI: 10.1109/JBHI.2021.3063721.
View
18.
Sheng J, Liu S, Wang Y, Cui R, Zhang X
. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017; 2017:9724371.
PMC: 5494581.
DOI: 10.1155/2017/9724371.
View
19.
Berry N, Lobban F, Belousov M, Emsley R, Nenadic G, Bucci S
. #WhyWeTweetMH: Understanding Why People Use Twitter to Discuss Mental Health Problems. J Med Internet Res. 2017; 19(4):e107.
PMC: 5399219.
DOI: 10.2196/jmir.6173.
View
20.
Mowery D, Smith H, Cheney T, Stoddard G, Coppersmith G, Bryan C
. Understanding Depressive Symptoms and Psychosocial Stressors on Twitter: A Corpus-Based Study. J Med Internet Res. 2017; 19(2):e48.
PMC: 5350450.
DOI: 10.2196/jmir.6895.
View