6.
Pulgar V
. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front Neurosci. 2019; 12:1019.
PMC: 6337067.
DOI: 10.3389/fnins.2018.01019.
View
7.
Edavettal S, Cejudo-Martin P, Dasgupta B, Yang D, Buschman M, Domingo D
. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. Med. 2022; 3(12):860-882.e15.
DOI: 10.1016/j.medj.2022.09.007.
View
8.
Boado R, Zhang Y, Wang Y, Pardridge W
. Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood-brain barrier delivery in the mouse. Biotechnol Bioeng. 2008; 102(4):1251-8.
PMC: 2729652.
DOI: 10.1002/bit.22135.
View
9.
Do T, Capdevila C, Pradier L, Blanchard V, Lopez-Grancha M, Schussler N
. Tetravalent Bispecific Tandem Antibodies Improve Brain Exposure and Efficacy in an Amyloid Transgenic Mouse Model. Mol Ther Methods Clin Dev. 2020; 19:58-77.
PMC: 7502788.
DOI: 10.1016/j.omtm.2020.08.014.
View
10.
Oyama H, Kiguchi Y, Morita I, Yamamoto C, Higashi Y, Taguchi M
. Seeking high-priority mutations enabling successful antibody-breeding: systematic analysis of a mutant that gained over 100-fold enhanced affinity. Sci Rep. 2020; 10(1):4807.
PMC: 7075871.
DOI: 10.1038/s41598-020-61529-7.
View
11.
Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgard P, Niewoehner J
. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One. 2014; 9(4):e96340.
PMC: 4005765.
DOI: 10.1371/journal.pone.0096340.
View
12.
Pardridge W
. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology. BioDrugs. 2017; 31(6):503-519.
DOI: 10.1007/s40259-017-0248-z.
View
13.
Davila A, Xu Z, Li S, Rozewicki J, Wilamowski J, Kotelnikov S
. AbAdapt: an adaptive approach to predicting antibody-antigen complex structures from sequence. Bioinform Adv. 2023; 2(1):vbac015.
PMC: 9710585.
DOI: 10.1093/bioadv/vbac015.
View
14.
Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P
. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014; 81(1):49-60.
DOI: 10.1016/j.neuron.2013.10.061.
View
15.
DAngelo S, Ferrara F, Naranjo L, Erasmus M, Hraber P, Bradbury A
. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol. 2018; 9:395.
PMC: 5852061.
DOI: 10.3389/fimmu.2018.00395.
View
16.
Rofo F, Buijs J, Falk R, Honek K, Lannfelt L, Lilja A
. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta. Transl Neurodegener. 2021; 10(1):38.
PMC: 8477473.
DOI: 10.1186/s40035-021-00258-x.
View
17.
Boado R, Zhou Q, Lu J, Hui E, Pardridge W
. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm. 2009; 7(1):237-44.
PMC: 2858389.
DOI: 10.1021/mp900235k.
View
18.
Paterson J, Webster C
. Exploiting transferrin receptor for delivering drugs across the blood-brain barrier. Drug Discov Today Technol. 2016; 20:49-52.
DOI: 10.1016/j.ddtec.2016.07.009.
View
19.
Webster C, Hatcher J, Burrell M, Thom G, Thornton P, Gurrell I
. Enhanced delivery of IL-1 receptor antagonist to the central nervous system as a novel anti-transferrin receptor-IL-1RA fusion reverses neuropathic mechanical hypersensitivity. Pain. 2016; 158(4):660-668.
PMC: 5359788.
DOI: 10.1097/j.pain.0000000000000810.
View
20.
Kumar N, Pizzo M, Nehra G, Wilken-Resman B, Boroumand S, Thorne R
. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem. 2018; 29(12):3937-3966.
PMC: 7234797.
DOI: 10.1021/acs.bioconjchem.8b00548.
View