6.
Moorhouse P, Rockwood K
. Frailty and its quantitative clinical evaluation. J R Coll Physicians Edinb. 2012; 42(4):333-40.
DOI: 10.4997/JRCPE.2012.412.
View
7.
Taylor R, Pare J, Venkatesh A, Mowafi H, Melnick E, Fleischman W
. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Acad Emerg Med. 2015; 23(3):269-78.
PMC: 5884101.
DOI: 10.1111/acem.12876.
View
8.
Alhassan Z, Watson M, Budgen D, Alshammari R, Alessa A, Al Moubayed N
. Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms With Electronic Health Records. JMIR Med Inform. 2021; 9(5):e25237.
PMC: 8185616.
DOI: 10.2196/25237.
View
9.
Mahmoudi E, Kamdar N, Kim N, Gonzales G, Singh K, Waljee A
. Use of electronic medical records in development and validation of risk prediction models of hospital readmission: systematic review. BMJ. 2020; 369:m958.
PMC: 7249246.
DOI: 10.1136/bmj.m958.
View
10.
Thorn C, Smith M, Aziz O, Holme T
. The Waterlow score for risk assessment in surgical patients. Ann R Coll Surg Engl. 2013; 95(1):52-6.
PMC: 3964640.
DOI: 10.1308/003588413X13511609954770.
View
11.
Klug M, Barash Y, Bechler S, Resheff Y, Tron T, Ironi A
. A Gradient Boosting Machine Learning Model for Predicting Early Mortality in the Emergency Department Triage: Devising a Nine-Point Triage Score. J Gen Intern Med. 2019; 35(1):220-227.
PMC: 6957629.
DOI: 10.1007/s11606-019-05512-7.
View
12.
Wan Y, Robbins A, Apea V, Orkin C, Pearse R, Puthucheary Z
. Ethnicity and acute hospital admissions: Multi-center analysis of routine hospital data. EClinicalMedicine. 2021; 39:101077.
PMC: 8478677.
DOI: 10.1016/j.eclinm.2021.101077.
View
13.
Jahandideh S, Ozavci G, Sahle B, Kouzani A, Magrabi F, Bucknall T
. Evaluation of machine learning-based models for prediction of clinical deterioration: A systematic literature review. Int J Med Inform. 2023; 175:105084.
DOI: 10.1016/j.ijmedinf.2023.105084.
View
14.
Jha A, DesRoches C, Campbell E, Donelan K, Rao S, Ferris T
. Use of electronic health records in U.S. hospitals. N Engl J Med. 2009; 360(16):1628-38.
DOI: 10.1056/NEJMsa0900592.
View
15.
Holland M, Kellett J
. A systematic review of the discrimination and absolute mortality predicted by the National Early Warning Scores according to different cut-off values and prediction windows. Eur J Intern Med. 2022; 98:15-26.
DOI: 10.1016/j.ejim.2021.12.024.
View
16.
Boulitsakis Logothetis S, Green D, Holland M, Al Moubayed N
. Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making. Sci Rep. 2023; 13(1):13563.
PMC: 10442440.
DOI: 10.1038/s41598-023-40661-0.
View
17.
Haegdorens F, Lefebvre J, Wils C, Franck E, Van Bogaert P
. Combining the Nurse Intuition Patient Deterioration Scale with the National Early Warning Score provides more Net Benefit in predicting serious adverse events: A prospective cohort study in medical, surgical, and geriatric wards. Intensive Crit Care Nurs. 2024; 83:103628.
DOI: 10.1016/j.iccn.2024.103628.
View
18.
Douw G, Huisman-de Waal G, van Zanten A, van der Hoeven J, Schoonhoven L
. Capturing early signs of deterioration: the dutch-early-nurse-worry-indicator-score and its value in the Rapid Response System. J Clin Nurs. 2016; 26(17-18):2605-2613.
DOI: 10.1111/jocn.13648.
View
19.
Downey C, Tahir W, Randell R, Brown J, Jayne D
. Strengths and limitations of early warning scores: A systematic review and narrative synthesis. Int J Nurs Stud. 2017; 76:106-119.
DOI: 10.1016/j.ijnurstu.2017.09.003.
View
20.
Collins G, Moons K, Dhiman P, Riley R, Beam A, Van Calster B
. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024; 385:e078378.
PMC: 11019967.
DOI: 10.1136/bmj-2023-078378.
View