6.
Parenti A, Muguerza E, Iroz A, Omarini A, Conde E, Alfaro M
. Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. Bioresour Technol. 2013; 133:142-9.
DOI: 10.1016/j.biortech.2013.01.072.
View
7.
Ren G, Xu X, Qu J, Zhu L, Wang T
. Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J Microbiol Biotechnol. 2016; 32(6):101.
DOI: 10.1007/s11274-016-2059-7.
View
8.
Almeida D, Cardoso R, Pereira C, Alves M, Ferreira I, Zied D
. Biochemical Approaches on Commercial Strains of Growing under Two Environmental Cultivation Conditions. J Fungi (Basel). 2022; 8(6).
PMC: 9224743.
DOI: 10.3390/jof8060616.
View
9.
Kertesz M, Thai M
. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl Microbiol Biotechnol. 2018; 102(4):1639-1650.
DOI: 10.1007/s00253-018-8777-z.
View
10.
Adanacioglu N, Boztok K, Akdeniz R
. The Effects of Light Intensity, Casing Layers, and Layering Styles on Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) Cultivation in Turkey. Int J Med Mushrooms. 2015; 17(4):397-405.
DOI: 10.1615/intjmedmushrooms.v17.i4.80.
View
11.
Yang Y, Guo Y, Wang Q, Hu B, Tian S, Yang Q
. Impacts of composting duration on physicochemical properties and microbial communities during short-term composting for the substrate for oyster mushrooms. Sci Total Environ. 2022; 847:157673.
DOI: 10.1016/j.scitotenv.2022.157673.
View
12.
Kong W, Sun B, Zhang J, Zhang Y, Gu L, Bao L
. Metagenomic analysis revealed the succession of microbiota and metabolic function in corncob composting for preparation of cultivation medium for Pleurotus ostreatus. Bioresour Technol. 2020; 306:123156.
DOI: 10.1016/j.biortech.2020.123156.
View
13.
Zhang D, Mortelmaier C, Margesin R
. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci Total Environ. 2012; 421-422:184-96.
DOI: 10.1016/j.scitotenv.2012.01.043.
View
14.
Zhang C, Gao Z, Shi W, Li L, Tian R, Huang J
. Material conversion, microbial community composition and metabolic functional succession during green soybean hull composting. Bioresour Technol. 2020; 316:123823.
DOI: 10.1016/j.biortech.2020.123823.
View
15.
Zhong B, An X, An W, Xiao X, Li H, Xia X
. Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. Bioresour Technol. 2021; 340:125742.
DOI: 10.1016/j.biortech.2021.125742.
View
16.
Joseph S, Kammann C, Shepherd J, Conte P, Schmidt H, Hagemann N
. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Sci Total Environ. 2017; 618:1210-1223.
DOI: 10.1016/j.scitotenv.2017.09.200.
View
17.
Vieira F, Andrew Pecchia J
. Bacterial Community Patterns in the Agaricus bisporus Cultivation System, from Compost Raw Materials to Mushroom Caps. Microb Ecol. 2021; 84(1):20-32.
DOI: 10.1007/s00248-021-01833-5.
View
18.
Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E
. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75(23):7537-41.
PMC: 2786419.
DOI: 10.1128/AEM.01541-09.
View
19.
Xu H, Fu B, Lei J, Kang H, Wang J, Huang X
. Soil microbial communities and their co-occurrence networks in response to long-term Pb-Zn contaminated soil in southern China. Environ Sci Pollut Res Int. 2022; 30(10):26687-26702.
DOI: 10.1007/s11356-022-23962-1.
View
20.
Kang W, Kim I, Lee T, Kim K, Kim D
. Effect of temperature on bacterial emissions in composting of swine manure. Waste Manag. 2013; 34(6):1006-11.
DOI: 10.1016/j.wasman.2013.10.039.
View