6.
Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers E
. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015; 4:28239.
PMC: 4491306.
DOI: 10.3402/jev.v4.28239.
View
7.
Chung J, Kim K, Yu N, An S, Lee S, Kwon K
. Fluid Shear Stress Regulates the Landscape of microRNAs in Endothelial Cell-Derived Small Extracellular Vesicles and Modulates the Function of Endothelial Cells. Int J Mol Sci. 2022; 23(3).
PMC: 8836123.
DOI: 10.3390/ijms23031314.
View
8.
Yilmaz Y, Kurt R, Yonal O, Polat N, Ataizi Celikel C, Gurdal A
. Coronary flow reserve is impaired in patients with nonalcoholic fatty liver disease: association with liver fibrosis. Atherosclerosis. 2010; 211(1):182-6.
DOI: 10.1016/j.atherosclerosis.2010.01.049.
View
9.
Dresselhaus E, Harris K, Blanchette C, Koles K, Del Signore S, Pescosolido M
. ESCRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. J Cell Biol. 2024; 223(9).
PMC: 11157088.
DOI: 10.1083/jcb.202405025.
View
10.
DSouza R, Woodhead J, Zeng N, Blenkiron C, Merry T, Cameron-Smith D
. Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am J Physiol Endocrinol Metab. 2018; 315(4):E723-E733.
DOI: 10.1152/ajpendo.00138.2018.
View
11.
Wang Y, Chen L, Liu M
. Microvesicles and diabetic complications--novel mediators, potential biomarkers and therapeutic targets. Acta Pharmacol Sin. 2014; 35(4):433-43.
PMC: 4813723.
DOI: 10.1038/aps.2013.188.
View
12.
Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E
. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying miRNAs in the Bloodstream. PLoS One. 2015; 10(5):e0125094.
PMC: 4425492.
DOI: 10.1371/journal.pone.0125094.
View
13.
Harraz M, Eacker S, Wang X, Dawson T, Dawson V
. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A. 2012; 109(46):18962-7.
PMC: 3503176.
DOI: 10.1073/pnas.1121288109.
View
14.
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T
. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases: Roadmap to the Clinic. Circulation. 2021; 143(14):1426-1449.
PMC: 8021236.
DOI: 10.1161/CIRCULATIONAHA.120.049254.
View
15.
Di W, Amdanee N, Zhang W, Zhou Y
. Long-term exercise-secreted extracellular vesicles promote browning of white adipocytes by suppressing miR-191a-5p. Life Sci. 2020; 263:118464.
DOI: 10.1016/j.lfs.2020.118464.
View
16.
Apostolopoulou M, Mastrototaro L, Hartwig S, Pesta D, Strassburger K, De Filippo E
. Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. Sci Adv. 2021; 7(41):eabi9551.
PMC: 8500512.
DOI: 10.1126/sciadv.abi9551.
View
17.
Chen S, Sigdel S, Sawant H, Bihl J, Wang J
. Exercise-Intervened Endothelial Progenitor Cell Exosomes Protect N2a Cells by Improving Mitochondrial Function. Int J Mol Sci. 2024; 25(2).
PMC: 10816803.
DOI: 10.3390/ijms25021148.
View
18.
Zhang Q, Higginbotham J, Jeppesen D, Yang Y, Li W, McKinley E
. Transfer of Functional Cargo in Exomeres. Cell Rep. 2019; 27(3):940-954.e6.
PMC: 6559347.
DOI: 10.1016/j.celrep.2019.01.009.
View
19.
Medina-Leyte D, Zepeda-Garcia O, Dominguez-Perez M, Gonzalez-Garrido A, Villarreal-Molina T, Jacobo-Albavera L
. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int J Mol Sci. 2021; 22(8).
PMC: 8068178.
DOI: 10.3390/ijms22083850.
View
20.
Alehossein P, Taheri M, Ghahremani P, Dakhlallah D, Brown C, Ishrat T
. Transplantation of Exercise-Induced Extracellular Vesicles as a Promising Therapeutic Approach in Ischemic Stroke. Transl Stroke Res. 2022; 14(2):211-237.
DOI: 10.1007/s12975-022-01025-4.
View