» Articles » PMID: 39614972

Ceftazidime-avibactam Tolerance and Persistence Among Difficult-to-treat KPC-producing Klebsiella Pneumoniae Clinical Isolates from Bloodstream Infections

Abstract

Purpose: Tolerance and persistence occur "silently" in bacteria categorized as susceptible by antimicrobial susceptibility testing in clinical microbiology laboratories. They are different from resistance phenomena, not well-studied, and often remain unnoticeable. We aimed to investigate and characterize ceftazidime-avibactam (CZA) tolerance/persistence in 80 Klebsiella pneumoniae isolates from bloodstream infections.

Methods: We used the Tolerance Disk Test (TDtest) to detect CZA tolerance/persistence and investigate the avibactam (AVI) influence on them, and time-kill assays with minimal duration for killing (MDK) determination to characterize/differentiate CZA tolerance from persistence, for selected isolates. Whole genome sequencing was performed for 49/80 selected isolates to investigate genes related to beta-lactam tolerance/persistence and resistance as well as phylogeny studies.

Results: Tolerance/persistence to CZA was detected in 48/80 (60%) isolates, all extensively drug-resistant (XDR) or multidrug-resistant, carbapenem-resistant K. pneumoniae (CRKp), KPC producers, and previously categorized as susceptible (not resistant) to CZA. No heteroresistance was detected. CZA tolerance/persistence occurred due to ceftazidime tolerance/persistence and was not related to AVI in the CZA combination. 5/11 isolates were characterized as CZA-tolerant and 5/11 as CZA-persistent. The single (1/11) XDR and CRKp non-KPC producer was truly susceptible. All the CZA-tolerant/persistent isolates (ST11, ST258, ST340, ST437, ST16, ST17, and ST307) harbored the carbapenemase-encoding gene bla. Mutation in only two genes (rpoS and degQ) related to beta-lactam tolerance/persistence was found in only 7/49 CZA-tolerant/persistent isolates, suggesting the presence of yet unknown beta-lactam tolerance/persistence genes.

Conclusion: Among the K. pneumoniae bloodstream isolates studied, 60%, previously categorized as susceptible to CZA, were, actually, tolerant/persistent to this antibiotic, all these KPC producers.

References
1.
Kadri S, Adjemian J, Lai Y, Spaulding A, Ricotta E, Prevots D . Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin Infect Dis. 2018; 67(12):1803-1814. PMC: 6260171. DOI: 10.1093/cid/ciy378. View

2.
Magiorakos A, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C . Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2011; 18(3):268-81. DOI: 10.1111/j.1469-0691.2011.03570.x. View

3.
Karakonstantis S, Kritsotakis E, Gikas A . Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection. 2020; 48(6):835-851. PMC: 7461763. DOI: 10.1007/s15010-020-01520-6. View

4.
Tamma P, Aitken S, Bonomo R, Mathers A, van Duin D, Clancy C . Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance.... Clin Infect Dis. 2022; 75(2):187-212. PMC: 9890506. DOI: 10.1093/cid/ciac268. View

5.
Tumbarello M, Trecarichi E, Corona A, De Rosa F, Bassetti M, Mussini C . Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase-producing K. pneumoniae. Clin Infect Dis. 2018; 68(3):355-364. DOI: 10.1093/cid/ciy492. View