6.
Schlegel C, van Slageren J, Manoli M, Brechin E, Dressel M
. Direct observation of quantum coherence in single-molecule magnets. Phys Rev Lett. 2008; 101(14):147203.
DOI: 10.1103/PhysRevLett.101.147203.
View
7.
Santanni F, Albino A, Atzori M, Ranieri D, Salvadori E, Chiesa M
. Probing Vibrational Symmetry Effects and Nuclear Spin Economy Principles in Molecular Spin Qubits. Inorg Chem. 2020; 60(1):140-151.
PMC: 7872321.
DOI: 10.1021/acs.inorgchem.0c02573.
View
8.
Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W
. Electrically driven nuclear spin resonance in single-molecule magnets. Science. 2014; 344(6188):1135-8.
DOI: 10.1126/science.1249802.
View
9.
Kolkowitz S, Safira A, High A, Devlin R, Choi S, Unterreithmeier Q
. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science. 2015; 347(6226):1129-32.
DOI: 10.1126/science.aaa4298.
View
10.
Tesi L, Stemmler F, Winkler M, Liu S, Das S, Sun X
. Modular Approach to Creating Functionalized Surface Arrays of Molecular Qubits. Adv Mater. 2023; 35(10):e2208998.
DOI: 10.1002/adma.202208998.
View
11.
Heinrich A, Oliver W, Vandersypen L, Ardavan A, Sessoli R, Loss D
. Quantum-coherent nanoscience. Nat Nanotechnol. 2021; 16(12):1318-1329.
DOI: 10.1038/s41565-021-00994-1.
View
12.
Bertaina S, Gambarelli S, Mitra T, Tsukerblat B, Muller A, Barbara B
. Quantum oscillations in a molecular magnet. Nature. 2008; 453(7192):203-6.
DOI: 10.1038/nature06962.
View
13.
Rugar D, Budakian R, Mamin H, Chui B
. Single spin detection by magnetic resonance force microscopy. Nature. 2004; 430(6997):329-32.
DOI: 10.1038/nature02658.
View
14.
Konarev D, Kuzmin A, Faraonov M, Ishikawa M, Khasanov S, Nakano Y
. Synthesis, structures, and properties of crystalline salts with radical anions of metal-containing and metal-free phthalocyanines. Chemistry. 2014; 21(3):1014-28.
DOI: 10.1002/chem.201404925.
View
15.
Pribitzer S, Doll A, Jeschke G
. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation. J Magn Reson. 2016; 263:45-54.
DOI: 10.1016/j.jmr.2015.12.014.
View
16.
Finazzo C, Calle C, Stoll S, Van Doorslaer S, Schweiger A
. Matrix effects on copper(II)phthalocyanine complexes. A combined continuous wave and pulse EPR and DFT study. Phys Chem Chem Phys. 2006; 8(16):1942-53.
DOI: 10.1039/b516184c.
View
17.
Cranston R, Lessard B
. Metal phthalocyanines: thin-film formation, microstructure, and physical properties. RSC Adv. 2022; 11(35):21716-21737.
PMC: 9034105.
DOI: 10.1039/d1ra03853b.
View
18.
Seddon E, Clarke J, Dunning D, Masciovecchio C, Milne C, Parmigiani F
. Short-wavelength free-electron laser sources and science: a review. Rep Prog Phys. 2017; 80(11):115901.
DOI: 10.1088/1361-6633/aa7cca.
View
19.
Sellies L, Spachtholz R, Bleher S, Eckrich J, Scheuerer P, Repp J
. Single-molecule electron spin resonance by means of atomic force microscopy. Nature. 2023; 624(7990):64-68.
PMC: 10700134.
DOI: 10.1038/s41586-023-06754-6.
View
20.
Virtanen P, Gommers R, Oliphant T, Haberland M, Reddy T, Cournapeau D
. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020; 17(3):261-272.
PMC: 7056644.
DOI: 10.1038/s41592-019-0686-2.
View