» Articles » PMID: 39606343

Clinical Sentiment Analysis by Large Language Models Enhances the Prediction of Hepatorenal Syndrome in Decompensated Cirrhosis

Overview
Journal medRxiv
Date 2024 Nov 28
PMID 39606343
Authors
Affiliations
Soon will be listed here.
Abstract

Background And Aims: Hepatorenal syndrome - Acute Kidney Injury (HRS-AKI) is a severe complication of decompensated cirrhosis that is challenging to predict. Sentiment analysis, a computational process of identifying and categorizing opinions and judgment expressed in text, may enhance traditional prediction methodologies based on structured variables. Large language models (LLMs), such as generative pretrained transformers (GPTs), have demonstrated abilities to perform sentiment analyses on non-clinical texts. We sought to determine if GPT-performed sentiment analysis could improve upon predictions using clinical covariates alone in the prediction of HRS-AKI.

Methods: Adult patients admitted to a single academic medical center with decompensated cirrhosis and AKI. We used a protected health information (PHI) compliant version of Microsoft Azure OpenAI GPT-4o to derive a sentiment score ranging from 0 to 1 for HRS-AKI, and conduct natural language processing (NLP) extraction of clinical terms associated with HRS-AKI in clinical notes. The area under the receiver operator curve (AUROC) was compared in logistic regression models incorporating structured variables (socio-demographics, MELD 3.0, hemodynamic parameters) with compared to without sentiment scores and NLP-extracted clinical terms.

Results: In our cohort of 314 participants, higher sentiment score was associated with the diagnosis of HRS-AKI (OR 1.33 per 0.1, 95% CI 1.02-1.79) in multivariate models. AUROC of the baseline model using structured clinical covariates alone was 0.639. With the addition of the GPT-4o derived sentiment score and clinical terms to structured covariates, the final model yielded an improved AUROC of 0.758 (p=0.03).

Conclusions: Clinical texts contain large amounts of data that are currently difficult to extract using standard methodologies. Sentiment analysis and NLP-based variable derivation with GPT-4o in clinical application is feasible and can improve the prediction of HRS-AKI over traditional modeling methodologies alone.

References
1.
Ge J, Li M, Delk M, Lai J . A Comparison of a Large Language Model vs Manual Chart Review for the Extraction of Data Elements From the Electronic Health Record. Gastroenterology. 2023; 166(4):707-709.e3. PMC: 11792087. DOI: 10.1053/j.gastro.2023.12.019. View

2.
Ge J, Chen I, Pletcher M, Lai J . Prompt Engineering for Generative Artificial Intelligence in Gastroenterology and Hepatology. Am J Gastroenterol. 2024; 119(9):1709-1713. PMC: 11413230. DOI: 10.14309/ajg.0000000000002689. View

3.
Denecke K, Deng Y . Sentiment analysis in medical settings: New opportunities and challenges. Artif Intell Med. 2015; 64(1):17-27. DOI: 10.1016/j.artmed.2015.03.006. View

4.
Denecke K, Reichenpfader D . Sentiment analysis of clinical narratives: A scoping review. J Biomed Inform. 2023; 140:104336. DOI: 10.1016/j.jbi.2023.104336. View

5.
Hajian-Tilaki K . Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014; 48:193-204. DOI: 10.1016/j.jbi.2014.02.013. View