» Articles » PMID: 39606222

Africanized Honeybee Venom ( Promotes Human Complement Activation Split Products Storm

Overview
Journal Front Immunol
Date 2024 Nov 28
PMID 39606222
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Complement activation split products are signatures of many immunopathological disorders. Among the laboratory findings observed in these diseases, a reduction in the level of circulating intact complement components can be mentioned, and this change has also been detected in envenomation by multiple Africanized honeybee (Apis mellifera) stings. Although envenomation by these animals elicits diverse life-threatening reactions, the capacity of bee venom (AmV) to activate the human complement system remains elusive.

Methods And Findings: By coupling immunochemical and functional approaches, it was observed that AmV strongly consumes components of the alternative pathway (AP) of the complement system in normal human serum (NHS). Additionally, AmV interfered with classical (CP) and lectin pathways (LP) activities. In parallel, a high increase in Ba fragment levels was detected, suggesting that the changes in AP activity were due to its activation. Furthermore, an increase in the level of the C1s-C1INH complex and a decrease in the physiological level of MASP1-C1INH suggested that CP and LP were also activated in the presence of AmV. Strikingly, NHS exposed to increasing AmV concentrations varying from 5 to 1000 µg/mL presented a high generation of C3a, C4a and C5a anaphylatoxins, and sC5b-9 complexes assembly, thus reinforcing that AmV triggers complement activation.

Conclusion: These results show that AmV is a strong complement activator. This activation presents a mixed profile, with a predominance of AP activation. This suggests that complement split products can play important roles in the envenomation by Africanized honeybee, as they could induce diverse immunopathological events observed in patients and may also dictate patient clinical prognosis.

References
1.
de Boer E, van Mourik A, Jongerius I . Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol. 2020; 11:578069. PMC: 7758290. DOI: 10.3389/fimmu.2020.578069. View

2.
Silva-de-Franca F, Villas-Boas I, Serrano S, Cogliati B, Chudzinski S, Lopes P . Naja annulifera Snake: New insights into the venom components and pathogenesis of envenomation. PLoS Negl Trop Dis. 2019; 13(1):e0007017. PMC: 6338361. DOI: 10.1371/journal.pntd.0007017. View

3.
Ren J, Zhao Y, Yuan Y, Han G, Li W, Huang Q . Complement depletion deteriorates clinical outcomes of severe abdominal sepsis: a conspirator of infection and coagulopathy in crime?. PLoS One. 2012; 7(10):e47095. PMC: 3473032. DOI: 10.1371/journal.pone.0047095. View

4.
Franca F, Benvenuti L, Fan H, dos Santos D, Hain S, Cardoso J . Severe and fatal mass attacks by 'killer' bees (Africanized honey bees--Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. Q J Med. 1994; 87(5):269-82. View

5.
Haas K, Toapanta F, Oliver J, Poe J, Weis J, Karp D . Cutting edge: C3d functions as a molecular adjuvant in the absence of CD21/35 expression. J Immunol. 2004; 172(10):5833-7. DOI: 10.4049/jimmunol.172.10.5833. View