» Articles » PMID: 39605428

UV-Induced DNA Repair Mechanisms and Their Effects on Mutagenesis and Culturability in

Overview
Journal bioRxiv
Date 2024 Nov 28
PMID 39605428
Authors
Affiliations
Soon will be listed here.
Abstract

Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in following UV treatment. However, prolonged UV exposure caused transient non-culturability and impaired SOS-mediated mutagenesis. Using fluorescent reporters, flow cytometry, promoter-reporter assays, single-gene deletions, knockouts, and clonogenic assays, we found that excessive UV exposure disrupts cellular translation, reducing SOS gene expression, albeit with minimal impact on membrane permeability or reactive oxygen species levels. While our findings underline the abundance of repair mechanisms in cells, enabling them to compensate when specific genes are disrupted, they also highlighted the differential impacts of gene deletions on mutagenesis versus culturability, leading to three major outcomes: (i) Disruption of proteins involved in DNA polymerase for translesion synthesis (UmuC and UmuD) or Holliday junction resolution (RuvC) results in significantly decreased mutagenesis levels while maintaining a transient non-culturability pattern after UV exposure. (ii) Disruption of proteins involved in homologous recombination (RecA and RecB) and nucleotide excision repair (UvrA) leads to both significantly reduced mutagenesis and a more severe transient non-culturability pattern after UV exposure, making these cells more sensitive to UV. (iii) Disruption of DNA Helicase II (UvrD), which functions in mismatch repair, does not affect mutagenesis levels from UV radiation but results in a very pronounced transient non-culturability pattern following UV exposure. Overall, our results further advance our understanding of bacterial adaptation mechanisms and the role of DNA repair pathways in shaping mutagenesis.

References
1.
Santos A, Moreirinha C, Lopes D, Esteves A, Henriques I, Almeida A . Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy. Environ Sci Technol. 2013; 47(12):6306-15. DOI: 10.1021/es400660g. View

2.
Kciuk M, Marciniak B, Mojzych M, Kontek R . Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci. 2020; 21(19). PMC: 7582305. DOI: 10.3390/ijms21197264. View

3.
Barrett T, Mok W, Murawski A, Brynildsen M . Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun. 2019; 10(1):1177. PMC: 6414640. DOI: 10.1038/s41467-019-09058-4. View

4.
Burckhardt S, Woodgate R, Scheuermann R, Echols H . UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci U S A. 1988; 85(6):1811-5. PMC: 279869. DOI: 10.1073/pnas.85.6.1811. View

5.
Sung W, Ackerman M, Miller S, Doak T, Lynch M . Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci U S A. 2012; 109(45):18488-92. PMC: 3494944. DOI: 10.1073/pnas.1216223109. View