6.
Mena-Sanchez G, Babio N, Becerra-Tomas N, Martinez-Gonzalez M, Diaz-Lopez A, Corella D
. Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome. Nutr Metab Cardiovasc Dis. 2019; 30(2):214-222.
DOI: 10.1016/j.numecd.2019.09.023.
View
7.
Biasizzo M, Kopitar-Jerala N
. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 2020; 11:591803.
PMC: 7583715.
DOI: 10.3389/fimmu.2020.591803.
View
8.
Zhang M, Dong X, Huang Z, Li X, Zhao Y, Wang Y
. Cheese consumption and multiple health outcomes: an umbrella review and updated meta-analysis of prospective studies. Adv Nutr. 2023; 14(5):1170-1186.
PMC: 10509445.
DOI: 10.1016/j.advnut.2023.06.007.
View
9.
Wang R, Halimulati M, Huang X, Ma Y, Li L, Zhang Z
. Sulforaphane-driven reprogramming of gut microbiome and metabolome ameliorates the progression of hyperuricemia. J Adv Res. 2022; 52:19-28.
PMC: 10555773.
DOI: 10.1016/j.jare.2022.11.003.
View
10.
Hu Y, Shi Y, Chen H, Tao M, Zhou X, Li J
. Blockade of Autophagy Prevents the Progression of Hyperuricemic Nephropathy Through Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis. Front Immunol. 2022; 13:858494.
PMC: 8924517.
DOI: 10.3389/fimmu.2022.858494.
View
11.
Li F, Yang W, Sun S, He W, Xu S, Han B
. Dietary factors and hypertension: A Mendelian randomization analysis. Food Sci Nutr. 2024; 12(4):2502-2510.
PMC: 11016398.
DOI: 10.1002/fsn3.3931.
View
12.
Tang C, Livingston M, Liu Z, Dong Z
. Autophagy in kidney homeostasis and disease. Nat Rev Nephrol. 2020; 16(9):489-508.
PMC: 7868042.
DOI: 10.1038/s41581-020-0309-2.
View
13.
Gherghina M, Peride I, Tiglis M, Neagu T, Niculae A, Checherita I
. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int J Mol Sci. 2022; 23(6).
PMC: 8949471.
DOI: 10.3390/ijms23063188.
View
14.
Yanai H, Adachi H, Hakoshima M, Katsuyama H
. Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. Int J Mol Sci. 2021; 22(17).
PMC: 8431537.
DOI: 10.3390/ijms22179221.
View
15.
Li Y, Shen Z, Zhu B, Zhang H, Zhang X, Ding X
. Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: a systematic review and meta-analysis. Glob Health Action. 2021; 14(1):1874652.
PMC: 7833047.
DOI: 10.1080/16549716.2021.1874652.
View
16.
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q
. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther. 2023; 8(1):204.
PMC: 10196327.
DOI: 10.1038/s41392-023-01468-7.
View
17.
El Ridi R, Tallima H
. Physiological functions and pathogenic potential of uric acid: A review. J Adv Res. 2017; 8(5):487-493.
PMC: 5512149.
DOI: 10.1016/j.jare.2017.03.003.
View
18.
Wen L, Yang H, Ma L, Fu P
. The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem. 2021; 476(3):1377-1386.
DOI: 10.1007/s11010-020-03997-z.
View
19.
Collotta D, Franchina M, Carlucci V, Collino M
. Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Front Pharmacol. 2023; 14:1245535.
PMC: 10494544.
DOI: 10.3389/fphar.2023.1245535.
View
20.
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang H
. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol. 2023; 11:1110765.
PMC: 9995824.
DOI: 10.3389/fbioe.2023.1110765.
View