6.
Bastias D, Johnson L, Card S
. Symbiotic bacteria of plant-associated fungi: friends or foes?. Curr Opin Plant Biol. 2019; 56:1-8.
DOI: 10.1016/j.pbi.2019.10.010.
View
7.
Emanuel R, Cesar Arturo P, Lourdes Iveth M, Homero R, Mauricio Nahuam C
. In vitro growth of is affected by butyl acetate, a compound produced during the co-culture of sp. and . 3 Biotech. 2020; 10(8):329.
PMC: 7334336.
DOI: 10.1007/s13205-020-02324-z.
View
8.
Lamour K, Stam R, Jupe J, Huitema E
. The oomycete broad-host-range pathogen Phytophthora capsici. Mol Plant Pathol. 2011; 13(4):329-37.
PMC: 6638677.
DOI: 10.1111/j.1364-3703.2011.00754.x.
View
9.
Rajer F, Wu H, Xie Y, Xie S, Raza W, Tahir H
. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology (Reading). 2017; 163(4):523-530.
DOI: 10.1099/mic.0.000451.
View
10.
Kigathi R, Unsicker S, Reichelt M, Kesselmeier J, Gershenzon J, Weisser W
. Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J Chem Ecol. 2009; 35(11):1335-48.
PMC: 2797619.
DOI: 10.1007/s10886-009-9716-3.
View
11.
Hunter S, Williams N, McDougal R, Scott P, Garbelotto M
. Evidence for rapid adaptive evolution of tolerance to chemical treatments in Phytophthora species and its practical implications. PLoS One. 2018; 13(12):e0208961.
PMC: 6287812.
DOI: 10.1371/journal.pone.0208961.
View
12.
Barchenger D, Lamour K, Bosland P
. Challenges and Strategies for Breeding Resistance in to the Multifarious Pathogen, . Front Plant Sci. 2018; 9:628.
PMC: 5962783.
DOI: 10.3389/fpls.2018.00628.
View
13.
Yi H, Yang J, Ryu C
. ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci. 2013; 4:122.
PMC: 3653112.
DOI: 10.3389/fpls.2013.00122.
View
14.
Kong W, Li P, Wu X, Wu T, Sun X
. Forest Tree Associated Bacterial Diffusible and Volatile Organic Compounds against Various Phytopathogenic Fungi. Microorganisms. 2020; 8(4).
PMC: 7232321.
DOI: 10.3390/microorganisms8040590.
View
15.
Chavez-Aviles M, Garcia-Alvarez M, Avila-Oviedo J, Hernandez-Hernandez I, Bautista-Ortega P, Macias-Rodriguez L
. Volatile Organic Compounds Produced by with Antifungal Properties against . Microorganisms. 2024; 12(10).
PMC: 11509848.
DOI: 10.3390/microorganisms12102007.
View
16.
Liu P, Cai Y, Zhang J, Wang R, Li B, Weng Q
. Antifungal activity of liquiritin in Phytophthora capsici comprises not only membrane-damage-mediated autophagy, apoptosis, and Ca reduction but also an induced defense responses in pepper. Ecotoxicol Environ Saf. 2020; 209:111813.
DOI: 10.1016/j.ecoenv.2020.111813.
View
17.
Volynchikova E, Kim K
. Biological Control of Oomycete Soilborne Diseases Caused by , and in Solanaceous Crops. Mycobiology. 2022; 50(5):269-293.
PMC: 9645277.
DOI: 10.1080/12298093.2022.2136333.
View
18.
Padilla-Jimenez S, Angoa-Perez M, Mena-Violante H, Oyoque-Salcedo G, Montanez-Soto J, Oregel-Zamudio E
. Identification of Organic Volatile Markers Associated with Aroma during Maturation of Strawberry Fruits. Molecules. 2021; 26(2).
PMC: 7833409.
DOI: 10.3390/molecules26020504.
View
19.
Wang W, Liu X, Han T, Li K, Qu Y, Gao Z
. Differential Potential of Resistance Mechanisms to the Fungicide Metalaxyl in Peppers. Microorganisms. 2020; 8(2).
PMC: 7074702.
DOI: 10.3390/microorganisms8020278.
View
20.
Lim S, Yoon M, Choi G, Choi Y, Jang K, Shin T
. Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic G341 against Various Phytopathogenic Fungi. Plant Pathol J. 2017; 33(5):488-498.
PMC: 5624491.
DOI: 10.5423/PPJ.OA.04.2017.0073.
View