6.
Markovic M, Dakovic A, Rottinghaus G, Kragovic M, Petkovic A, Krajisnik D
. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. Colloids Surf B Biointerfaces. 2017; 151:324-332.
DOI: 10.1016/j.colsurfb.2016.12.033.
View
7.
Yang L, Zhang Z
. Degradation of six typical pesticides in water by VUV/UV/chlorine process: Evaluation of the synergistic effect. Water Res. 2019; 161:439-447.
DOI: 10.1016/j.watres.2019.06.021.
View
8.
Qiang Z, Ling W, Tian F
. Kinetics and mechanism for omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water. Chemosphere. 2012; 90(6):1966-72.
DOI: 10.1016/j.chemosphere.2012.10.059.
View
9.
Guo X, Zhao Z, Gao X, Dong Y, Fu H, Zhang X
. Study on the adsorption performance of modified high silica fly ash for methylene blue. RSC Adv. 2024; 14(30):21342-21354.
PMC: 11228756.
DOI: 10.1039/d4ra04017a.
View
10.
Terzyk A
. Molecular properties and intermolecular forces--factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. J Colloid Interface Sci. 2004; 275(1):9-29.
DOI: 10.1016/j.jcis.2004.02.011.
View
11.
Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Narayanasamy S, Selvaraj R
. Magnetic activated charcoal/FeO nanocomposite for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies. Chemosphere. 2021; 286(Pt 3):131938.
DOI: 10.1016/j.chemosphere.2021.131938.
View
12.
Wang Y, Lin C, Liu X, Ren W, Huang X, He M
. Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration. Sci Total Environ. 2021; 778:146353.
DOI: 10.1016/j.scitotenv.2021.146353.
View
13.
Syafrudin M, Kristanti R, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi W
. Pesticides in Drinking Water-A Review. Int J Environ Res Public Health. 2021; 18(2).
PMC: 7826868.
DOI: 10.3390/ijerph18020468.
View
14.
Seah M, Ng Z, Lai G, Lau W, Al-Ghouti M, Alias N
. Removal of multiple pesticides from water by different types of membranes. Chemosphere. 2024; 356:141960.
DOI: 10.1016/j.chemosphere.2024.141960.
View
15.
Milojevic-Rakic M, Popadic D, Janosevic Lezaic A, Jevremovic A, Nedic Vasiljevic B, Uskokovic-Markovic S
. MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination. Environ Sci Process Impacts. 2022; 24(2):265-276.
DOI: 10.1039/d1em00437a.
View
16.
Andrunik M, Skalny M, Gajewska M, Marzec M, Bajda T
. Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities. Heliyon. 2023; 9(10):e20572.
PMC: 10570599.
DOI: 10.1016/j.heliyon.2023.e20572.
View
17.
Tenea A, Dinu C, Rus P, Ionescu I, Gheorghe S, Iancu V
. Exploring adsorption dynamics of heavy metals onto varied commercial microplastic substrates: Isothermal models and kinetics analysis. Heliyon. 2024; 10(15):e35364.
PMC: 11334899.
DOI: 10.1016/j.heliyon.2024.e35364.
View
18.
Yu R, Yu X, Xue B, Liao J, Zhu W, Tian S
. Adsorption of chlortetracycline from aquaculture wastewater using modified zeolites. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020; 55(5):573-584.
DOI: 10.1080/10934529.2020.1717275.
View
19.
Wu G, Ma J, Li S, Wang S, Jiang B, Luo S
. Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions. Environ Res. 2020; 186:109542.
DOI: 10.1016/j.envres.2020.109542.
View
20.
Kazak O, Eker Y, Akin I, Bingol H, Tor A
. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution. Environ Sci Pollut Res Int. 2017; 24(29):23057-23068.
DOI: 10.1007/s11356-017-9937-x.
View