6.
de Freitas L, Varca G, Dos Santos Batista J, Lugao A
. An Overview of the Synthesis of Gold Nanoparticles Using Radiation Technologies. Nanomaterials (Basel). 2018; 8(11).
PMC: 6266156.
DOI: 10.3390/nano8110939.
View
7.
Vines J, Yoon J, Ryu N, Lim D, Park H
. Gold Nanoparticles for Photothermal Cancer Therapy. Front Chem. 2019; 7:167.
PMC: 6460051.
DOI: 10.3389/fchem.2019.00167.
View
8.
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A
. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006; 110(32):15700-7.
DOI: 10.1021/jp061667w.
View
9.
Knotigova P, Masek J, Hubatka F, Kotoucek J, Kulich P, Simeckova P
. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm. 2019; 16(8):3441-3451.
DOI: 10.1021/acs.molpharmaceut.9b00225.
View
10.
Tian Y, Qiang S, Wang L
. Gold Nanomaterials for Imaging-Guided Near-Infrared Cancer Therapy. Front Bioeng Biotechnol. 2019; 7:398.
PMC: 6906270.
DOI: 10.3389/fbioe.2019.00398.
View
11.
Dykman L, Khlebtsov N
. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2011; 41(6):2256-82.
DOI: 10.1039/c1cs15166e.
View
12.
Sani A, Cao C, Cui D
. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep. 2021; 26:100991.
PMC: 8063742.
DOI: 10.1016/j.bbrep.2021.100991.
View
13.
Omar N, Fen Y, Abdullah J, Mustapha Kamil Y, Daniyal W, Sadrolhosseini A
. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep. 2020; 10(1):2374.
PMC: 7012912.
DOI: 10.1038/s41598-020-59388-3.
View
14.
Fleming C, Salisbury E, Kirwan P, Painter D, Barnetson R
. Chrysiasis after low-dose gold and UV light exposure. J Am Acad Dermatol. 1996; 34(2 Pt 2):349-51.
DOI: 10.1016/s0190-9622(07)80006-5.
View
15.
Svadlakova T, Hubatka F, Knotigova P, Kulich P, Masek J, Kotoucek J
. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. Nanomaterials (Basel). 2020; 10(3).
PMC: 7152843.
DOI: 10.3390/nano10030418.
View
16.
Wang Y, Quinsaat J, Ono T, Maeki M, Tokeshi M, Isono T
. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nat Commun. 2020; 11(1):6089.
PMC: 7705015.
DOI: 10.1038/s41467-020-19947-8.
View
17.
Boudier A, Le Faou A
. Nanoparticles and Other Nanostructures and the Control of Pathogens: From Bench to Vaccines. Int J Mol Sci. 2023; 24(10).
PMC: 10218928.
DOI: 10.3390/ijms24109063.
View
18.
Loula M, Kana A, Mestek O
. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon. Talanta. 2019; 202:565-571.
DOI: 10.1016/j.talanta.2019.04.073.
View
19.
Zhu M, Du L, Zhao R, Wang H, Zhao Y, Nie G
. Cell-Penetrating Nanoparticles Activate the Inflammasome to Enhance Antibody Production by Targeting Microtubule-Associated Protein 1-Light Chain 3 for Degradation. ACS Nano. 2020; 14(3):3703-3717.
PMC: 7457719.
DOI: 10.1021/acsnano.0c00962.
View
20.
Effenberg R, Knotigova P, Zyka D, celechovska H, Masek J, Bartheldyova E
. Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo. J Med Chem. 2017; 60(18):7745-7763.
DOI: 10.1021/acs.jmedchem.7b00593.
View