6.
Mazzaferri E, Jhiang S
. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994; 97(5):418-28.
DOI: 10.1016/0002-9343(94)90321-2.
View
7.
Albano D, Tulchinsky M, Dondi F, Mazzoletti A, Lombardi D, Bertagna F
. Thyroglobulin doubling time offers a better threshold than thyroglobulin level for selecting optimal candidates to undergo localizing [F]FDG PET/CT in non-iodine avid differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2020; 48(2):461-468.
PMC: 7835169.
DOI: 10.1007/s00259-020-04992-8.
View
8.
Ventura D, Dittmann M, Buther F, Schafers M, Rahbar K, Hescheler D
. Diagnostic Performance of [F]TFB PET/CT Compared with Therapeutic Activity [I]Iodine SPECT/CT and [F]FDG PET/CT in Recurrent Differentiated Thyroid Carcinoma. J Nucl Med. 2024; 65(2):192-198.
PMC: 10858375.
DOI: 10.2967/jnumed.123.266513.
View
9.
Miller M, Chen Q, Elashoff D, Abemayor E, St John M
. Positron emission tomography and positron emission tomography-CT evaluation for recurrent papillary thyroid carcinoma: meta-analysis and literature review. Head Neck. 2010; 33(4):562-5.
DOI: 10.1002/hed.21492.
View
10.
Lubberink M, Abdul Fatah S, Brans B, Hoekstra O, Teule G
. The role of (124)I-PET in diagnosis and treatment of thyroid carcinoma. Q J Nucl Med Mol Imaging. 2007; 52(1):30-6.
View
11.
Treglia G, Bertagna F, Sadeghi R, Verburg F, Ceriani L, Giovanella L
. Focal thyroid incidental uptake detected by ¹⁸F-fluorodeoxyglucose positron emission tomography. Meta-analysis on prevalence and malignancy risk. Nuklearmedizin. 2013; 52(4):130-6.
DOI: 10.3413/Nukmed-0568-13-03.
View
12.
Araz M, Soydal C, Demir O, Gokcan M, Kucuk N
. The Role of F-FDOPA PET/CT in Recurrent Medullary Thyroid Cancer Patients with Elevated Serum Calcitonin Levels. Mol Imaging Radionucl Ther. 2023; 32(1):1-7.
PMC: 9950688.
DOI: 10.4274/mirt.galenos.2022.81904.
View
13.
Bertagna F, Biasiotto G, Orlando E, Bosio G, Giubbini R
. Role of ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography in patients affected by differentiated thyroid carcinoma, high thyroglobulin level, and negative ¹³¹I scan: review of the literature. Jpn J Radiol. 2010; 28(9):629-36.
DOI: 10.1007/s11604-010-0488-z.
View
14.
Schlumberger M, Brose M, Elisei R, Leboulleux S, Luster M, Pitoia F
. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2014; 2(5):356-8.
DOI: 10.1016/S2213-8587(13)70215-8.
View
15.
Dong M, Liu Z, Zhao K, Ruan L, Wang G, Yang S
. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009; 30(8):639-50.
DOI: 10.1097/MNM.0b013e32832dcfa7.
View
16.
Robbins R, Wan Q, Grewal R, Reibke R, Gonen M, Strauss H
. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2005; 91(2):498-505.
DOI: 10.1210/jc.2005-1534.
View
17.
Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R
. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013; 2013:965212.
PMC: 3664492.
DOI: 10.1155/2013/965212.
View
18.
Binse I, Poeppel T, Ruhlmann M, Gomez B, Umutlu L, Bockisch A
. Imaging with (124)I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?. Eur J Nucl Med Mol Imaging. 2015; 43(6):1011-7.
DOI: 10.1007/s00259-015-3288-y.
View
19.
Wierts R, Brans B, Havekes B, Kemerink G, Halders S, Schaper N
. Dose-Response Relationship in Differentiated Thyroid Cancer Patients Undergoing Radioiodine Treatment Assessed by Means of 124I PET/CT. J Nucl Med. 2016; 57(7):1027-32.
DOI: 10.2967/jnumed.115.168799.
View
20.
Ocak M, Demirci E, Kabasakal L, Aygun A, Tutar R, Araman A
. Evaluation and comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-NOC PET/CT imaging in well-differentiated thyroid cancer. Nucl Med Commun. 2013; 34(11):1084-9.
DOI: 10.1097/MNM.0b013e328364eaab.
View