6.
Drasdo N, Millican C, Katholi C, Curcio C
. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res. 2007; 47(22):2901-11.
PMC: 2077907.
DOI: 10.1016/j.visres.2007.01.007.
View
7.
Jansonius N, Nevalainen J, Selig B, Zangwill L, Sample P, Budde W
. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Res. 2009; 49(17):2157-63.
PMC: 2848177.
DOI: 10.1016/j.visres.2009.04.029.
View
8.
Al-Nosairy K, Thieme H, Hoffmann M
. Diagnostic performance of multifocal photopic negative response, pattern electroretinogram and optical coherence tomography in glaucoma. Exp Eye Res. 2020; 200:108242.
DOI: 10.1016/j.exer.2020.108242.
View
9.
Parisi V, Manni G, Centofanti M, Gandolfi S, Olzi D, Bucci M
. Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology. 2001; 108(5):905-12.
DOI: 10.1016/s0161-6420(00)00644-8.
View
10.
Quigley H, Green W
. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979; 86(10):1803-30.
DOI: 10.1016/s0161-6420(79)35338-6.
View
11.
Machida S, Toba Y, Ohtaki A, Gotoh Y, Kaneko M, Kurosaka D
. Photopic negative response of focal electoretinograms in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008; 49(12):5636-44.
DOI: 10.1167/iovs.08-1946.
View
12.
Abdelshafy Tabl A, Abdelshafy Tabl M
. Correlation between OCT-angiography and photopic negative response in patients with primary open angle glaucoma. Int Ophthalmol. 2022; 43(6):1889-1901.
PMC: 10202979.
DOI: 10.1007/s10792-022-02588-9.
View
13.
Awwad M, Nada O, Hamdi M, El-Shazly A, Elwan S
. Correlation Between Optical Coherence Tomography and Photopic Negative Response of Flash Electroretinography in Ganglion Cell Complex Assessment in Glaucoma Patients. Clin Ophthalmol. 2022; 16:893-904.
PMC: 8958198.
DOI: 10.2147/OPTH.S356436.
View
14.
Parisi V
. Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer's disease. Semin Ophthalmol. 2003; 18(2):50-7.
DOI: 10.1076/soph.18.2.50.15855.
View
15.
Bekollari M, Dettoraki M, Stavrou V, Skouroliakou A, Liaparinos P
. Investigating the Structural and Functional Changes in the Optic Nerve in Patients with Early Glaucoma Using the Optical Coherence Tomography (OCT) and RETeval System. Sensors (Basel). 2023; 23(9).
PMC: 10181589.
DOI: 10.3390/s23094504.
View
16.
Heijl A, Lundqvist L
. The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol (Copenh). 1984; 62(4):658-64.
DOI: 10.1111/j.1755-3768.1984.tb03979.x.
View
17.
Kaneko M, Machida S, Hoshi Y, Kurosaka D
. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr Eye Res. 2014; 40(1):77-86.
DOI: 10.3109/02713683.2014.915575.
View
18.
Parisi V, Ziccardi L, Tanga L, Roberti G, Barbano L, Carnevale C
. Neural Conduction Along Postretinal Visual Pathways in Glaucoma. Front Aging Neurosci. 2021; 13:697425.
PMC: 8365149.
DOI: 10.3389/fnagi.2021.697425.
View
19.
Parisi V, Falsini B
. Electrophysiological evaluation of the macular cone system: focal electroretinography and visual evoked potentials after photostress. Semin Ophthalmol. 1999; 13(4):178-88.
DOI: 10.3109/08820539809056051.
View
20.
Wilsey L, Reynaud J, Cull G, Burgoyne C, Fortune B
. Macular Structure and Function in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci. 2016; 57(4):1892-900.
PMC: 4849889.
DOI: 10.1167/iovs.15-18119.
View