6.
Wong D, Chao J, Av-Gay Y
. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends Microbiol. 2012; 21(2):100-9.
DOI: 10.1016/j.tim.2012.09.002.
View
7.
Prisic S, Husson R
. Mycobacterium tuberculosis Serine/Threonine Protein Kinases. Microbiol Spectr. 2014; 2(5).
PMC: 4242435.
DOI: 10.1128/microbiolspec.MGM2-0006-2013.
View
8.
Chatterjee A
. Mycobacterium tuberculosis and its secreted tyrosine phosphatases. Biochimie. 2023; 212:41-47.
DOI: 10.1016/j.biochi.2023.04.007.
View
9.
Richard-Greenblatt M, Av-Gay Y
. Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiol Spectr. 2017; 5(2).
PMC: 11687473.
DOI: 10.1128/microbiolspec.TBTB2-0005-2015.
View
10.
Vickers C, Silva A, Chakraborty A, Fernandez P, Kurepina N, Saville C
. Structure-Based Design of MptpB Inhibitors That Reduce Multidrug-Resistant Mycobacterium tuberculosis Survival and Infection Burden in Vivo. J Med Chem. 2018; 61(18):8337-8352.
PMC: 6459586.
DOI: 10.1021/acs.jmedchem.8b00832.
View
11.
Majlessi L, Combaluzier B, Albrecht I, Garcia J, Nouze C, Pieters J
. Inhibition of phagosome maturation by mycobacteria does not interfere with presentation of mycobacterial antigens by MHC molecules. J Immunol. 2007; 179(3):1825-33.
DOI: 10.4049/jimmunol.179.3.1825.
View
12.
Chen D, Liu L, Lu Y, Chen S
. Identification of fusarielin M as a novel inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). Bioorg Chem. 2020; 106:104495.
DOI: 10.1016/j.bioorg.2020.104495.
View
13.
Uribe-Querol E, Rosales C
. Control of Phagocytosis by Microbial Pathogens. Front Immunol. 2017; 8:1368.
PMC: 5660709.
DOI: 10.3389/fimmu.2017.01368.
View
14.
Cowley S, Babakaiff R, Av-Gay Y
. Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Res Microbiol. 2002; 153(4):233-41.
DOI: 10.1016/s0923-2508(02)01309-8.
View
15.
Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar N
. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol. 2003; 50(3):751-62.
DOI: 10.1046/j.1365-2958.2003.03712.x.
View
16.
Saha S, Das P, BoseDasgupta S
. "It Takes Two to Tango": Role of Neglected Macrophage Manipulators Coronin 1 and Protein Kinase G in Mycobacterial Pathogenesis. Front Cell Infect Microbiol. 2020; 10:582563.
PMC: 7606305.
DOI: 10.3389/fcimb.2020.582563.
View
17.
Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton A, Tabernero L
. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J. 2007; 406(1):13-8.
PMC: 1948985.
DOI: 10.1042/BJ20070670.
View
18.
Fernandez-Soto P, Bruce A, Fielding A, Cavet J, Tabernero L
. Mechanism of catalysis and inhibition of Mycobacterium tuberculosis SapM, implications for the development of novel antivirulence drugs. Sci Rep. 2019; 9(1):10315.
PMC: 6635428.
DOI: 10.1038/s41598-019-46731-6.
View
19.
Alsayed S, Gunosewoyo H
. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci. 2023; 24(6).
PMC: 10049048.
DOI: 10.3390/ijms24065202.
View
20.
Arris C, Boyle F, Calvert A, Curtin N, Endicott J, Garman E
. Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles. J Med Chem. 2000; 43(15):2797-804.
DOI: 10.1021/jm990628o.
View