6.
Tracz M, Bialek W
. Beyond K48 and K63: non-canonical protein ubiquitination. Cell Mol Biol Lett. 2021; 26(1):1.
PMC: 7786512.
DOI: 10.1186/s11658-020-00245-6.
View
7.
Liu X, Zhou Y, Du M, Liang X, Fan F, Huang G
. The calcium-dependent protein kinase CPK28 is targeted by the ubiquitin ligases ATL31 and ATL6 for proteasome-mediated degradation to fine-tune immune signaling in Arabidopsis. Plant Cell. 2021; 34(1):679-697.
PMC: 8774090.
DOI: 10.1093/plcell/koab242.
View
8.
Patel R, Pannala N, Das C
. Reading and Writing the Ubiquitin Code Using Genetic Code Expansion. Chembiochem. 2024; 25(11):e202400190.
PMC: 11161312.
DOI: 10.1002/cbic.202400190.
View
9.
Kim T, Guan S, Sun Y, Deng Z, Tang W, Shang J
. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol. 2009; 11(10):1254-60.
PMC: 2910619.
DOI: 10.1038/ncb1970.
View
10.
Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T
. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell. 2011; 23(8):2831-49.
PMC: 3180795.
DOI: 10.1105/tpc.111.087122.
View
11.
Shabek N, Herman-Bachinsky Y, Buchsbaum S, Lewinson O, Haj-Yahya M, Hejjaoui M
. The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Mol Cell. 2012; 48(1):87-97.
DOI: 10.1016/j.molcel.2012.07.011.
View
12.
Schmukle A, Walczak H
. No one can whistle a symphony alone - how different ubiquitin linkages cooperate to orchestrate NF-κB activity. J Cell Sci. 2012; 125(Pt 3):549-59.
DOI: 10.1242/jcs.091793.
View
13.
Gomez-Gomez L, Boller T
. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000; 5(6):1003-11.
DOI: 10.1016/s1097-2765(00)80265-8.
View
14.
Hou S, Rodrigues O, Liu Z, Shan L, He P
. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. Mol Plant. 2023; 17(1):26-49.
PMC: 10872522.
DOI: 10.1016/j.molp.2023.11.011.
View
15.
Cao Y, Liang Y, Tanaka K, Nguyen C, Jedrzejczak R, Joachimiak A
. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife. 2014; 3.
PMC: 4356144.
DOI: 10.7554/eLife.03766.
View
16.
Asmamaw M, Liu Y, Zheng Y, Shi X, Liu H
. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 2020; 40(5):1920-1949.
DOI: 10.1002/med.21675.
View
17.
Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X
. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe. 2010; 7(4):290-301.
DOI: 10.1016/j.chom.2010.03.007.
View
18.
Liu T, Liu Z, Song C, Hu Y, Han Z, She J
. Chitin-induced dimerization activates a plant immune receptor. Science. 2012; 336(6085):1160-4.
DOI: 10.1126/science.1218867.
View
19.
Furlan G, Nakagami H, Eschen-Lippold L, Jiang X, Majovsky P, Kowarschik K
. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. Plant Cell. 2017; 29(4):726-745.
PMC: 5435422.
DOI: 10.1105/tpc.16.00654.
View
20.
Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z
. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe. 2014; 15(3):329-38.
DOI: 10.1016/j.chom.2014.02.009.
View