6.
He H, Su J, Shu S, Zhang Y, Ao Y, Liu B
. Two homologous putative protein tyrosine phosphatases, OsPFA-DSP2 and AtPFA-DSP4, negatively regulate the pathogen response in transgenic plants. PLoS One. 2012; 7(4):e34995.
PMC: 3325911.
DOI: 10.1371/journal.pone.0034995.
View
7.
Strader L, Monroe-Augustus M, Bartel B
. The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation. BMC Plant Biol. 2008; 8:41.
PMC: 2374786.
DOI: 10.1186/1471-2229-8-41.
View
8.
Xin J, Li C, Ning K, Qin Y, Shang J, Sun Y
. AtPFA-DSP3, an atypical dual-specificity protein tyrosine phosphatase, affects salt stress response by modulating MPK3 and MPK6 activity. Plant Cell Environ. 2021; 44(5):1534-1548.
DOI: 10.1111/pce.14002.
View
9.
Ulm R, Ichimura K, Mizoguchi T, Peck S, Zhu T, Wang X
. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 2002; 21(23):6483-93.
PMC: 136950.
DOI: 10.1093/emboj/cdf646.
View
10.
Liu R, Liu Y, Ye N, Zhu G, Chen M, Jia L
. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment. J Exp Bot. 2014; 66(5):1339-53.
PMC: 4339596.
DOI: 10.1093/jxb/eru484.
View
11.
Lee J, Ellis B
. Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J Biol Chem. 2007; 282(34):25020-9.
DOI: 10.1074/jbc.M701888200.
View
12.
Tang Q, Guittard-Crilat E, Maldiney R, Habricot Y, Miginiac E, Bouly J
. The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana. Planta. 2016; 243(4):909-23.
DOI: 10.1007/s00425-015-2447-5.
View
13.
Gonzalez E
. Drought Stress Tolerance in Plants. Int J Mol Sci. 2023; 24(7).
PMC: 10095095.
DOI: 10.3390/ijms24076562.
View
14.
Brautigan D
. Protein Ser/Thr phosphatases--the ugly ducklings of cell signalling. FEBS J. 2012; 280(2):324-45.
DOI: 10.1111/j.1742-4658.2012.08609.x.
View
15.
Collinge D, Jensen B, Jorgensen H
. Fungal endophytes in plants and their relationship to plant disease. Curr Opin Microbiol. 2022; 69:102177.
DOI: 10.1016/j.mib.2022.102177.
View
16.
MacRobbie E
. Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci U S A. 2002; 99(18):11963-8.
PMC: 129377.
DOI: 10.1073/pnas.172360399.
View
17.
Nemoto K, Takemori N, Seki M, Shinozaki K, Sawasaki T
. Members of the Plant CRK Superfamily Are Capable of Trans- and Autophosphorylation of Tyrosine Residues. J Biol Chem. 2015; 290(27):16665-77.
PMC: 4505418.
DOI: 10.1074/jbc.M114.617274.
View
18.
Wang W, Hostettler C, Damberger F, Kossmann J, Lloyd J, Zeeman S
. Modification of Cassava Root Starch Phosphorylation Enhances Starch Functional Properties. Front Plant Sci. 2018; 9:1562.
PMC: 6218586.
DOI: 10.3389/fpls.2018.01562.
View
19.
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret M, Vallad G
. Future of Bacterial Disease Management in Crop Production. Annu Rev Phytopathol. 2022; 60:259-282.
DOI: 10.1146/annurev-phyto-021621-121806.
View
20.
Dautel R, Wu X, Heunemann M, Schulze W, Harter K
. The Sensor Histidine Kinases AHK2 and AHK3 Proceed into Multiple Serine/Threonine/Tyrosine Phosphorylation Pathways in Arabidopsis thaliana. Mol Plant. 2015; 9(1):182-186.
DOI: 10.1016/j.molp.2015.10.002.
View