» Articles » PMID: 39594926

Decoding Motor Skills: Video Analysis Unveils Age-Specific Patterns in Childhood and Adolescent Movement

Overview
Specialty Health Services
Date 2024 Nov 27
PMID 39594926
Authors
Affiliations
Soon will be listed here.
Abstract

Motor skill development is crucial in human growth, evolving with the maturation of the nervous and musculoskeletal systems. Quantifying these skills, especially coordinative abilities, remains challenging. This study aimed to assess the performance of five motor tasks in children and adolescents using high-speed video analysis, providing data for movement and health professionals. Seventy-two volunteers were divided into three age groups: 27 first-grade primary school students (19 males and 8 females, aged 6.5 ± 0.5 years), 35 fourth-grade primary school students (16 males and 19 females, aged 9.2 ± 0.4 years), and 28 s-year middle school students (16 males and 12 females, aged 13.0 ± 0.3 years). Participants performed five motor tasks: standing long jump, running long jump, stationary ball throw, running ball throw, and sprint running. Each task was recorded at 120 frames per second and analyzed using specialized software to measure linear and angular kinematic parameters. Quantitative measurements were taken in the sagittal plane, while qualitative observations were made using a dichotomous approach. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney tests with Bonferroni correction. Significant differences were observed across age groups in various parameters. In the standing long jump, older participants exhibited a longer time between initial movement and maximum loading. The running long jump revealed differences in the take-off angle, with fourth-grade students performing the best. Ball-throwing tests indicated improvements in the release angle with age, particularly in females. Sprint running demonstrated the expected improvements in time and stride length with age. Gender differences were notable in fourth-grade students during the running long jump, with females showing greater knee flexion, while males achieved better take-off angles. Video analysis effectively identified age-related and gender-specific differences in motor skill performance. The main differences were measured between first-grade primary school and second-year middle school students while gender differences were limited to all age groups. This method provides valuable insights into motor development trajectories and can be used by professionals to objectively assess and monitor the technical aspects of motor skills across different age groups.

References
1.
Robinson L, Stodden D, Barnett L, Lopes V, Logan S, Rodrigues L . Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015; 45(9):1273-1284. DOI: 10.1007/s40279-015-0351-6. View

2.
Nagy A, Wilhelm M, Domokos M, Gyori F, Berki T . Assessment Tools Measuring Fundamental Movement Skills of Primary School Children: A Narrative Review in Methodological Perspective. Sports (Basel). 2023; 11(9). PMC: 10534471. DOI: 10.3390/sports11090178. View

3.
Rodrigues L, Stodden D, Lopes V . Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school. J Sci Med Sport. 2015; 19(1):87-92. DOI: 10.1016/j.jsams.2015.01.002. View

4.
Rudd J, Barnett L, Butson M, Farrow D, Berry J, Polman R . Fundamental Movement Skills Are More than Run, Throw and Catch: The Role of Stability Skills. PLoS One. 2015; 10(10):e0140224. PMC: 4607429. DOI: 10.1371/journal.pone.0140224. View

5.
Wattie N, Schorer J, Baker J . The relative age effect in sport: a developmental systems model. Sports Med. 2014; 45(1):83-94. DOI: 10.1007/s40279-014-0248-9. View