6.
Mathis A, Mamidanna P, Cury K, Abe T, Murthy V, Mathis M
. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018; 21(9):1281-1289.
DOI: 10.1038/s41593-018-0209-y.
View
7.
Alexandrov V, Brunner D, Menalled L, Kudwa A, Watson-Johnson J, Mazzella M
. Large-scale phenome analysis defines a behavioral signature for Huntington's disease genotype in mice. Nat Biotechnol. 2016; 34(8):838-44.
DOI: 10.1038/nbt.3587.
View
8.
Wotton J, Peterson E, Anderson L, Murray S, Braun R, Chesler E
. Machine learning-based automated phenotyping of inflammatory nocifensive behavior in mice. Mol Pain. 2020; 16:1744806920958596.
PMC: 7509709.
DOI: 10.1177/1744806920958596.
View
9.
Jhuang H, Garrote E, Mutch J, Yu X, Khilnani V, Poggio T
. Automated home-cage behavioural phenotyping of mice. Nat Commun. 2010; 1:68.
DOI: 10.1038/ncomms1064.
View
10.
Bermudez Contreras E, Sutherland R, Mohajerani M, Whishaw I
. Challenges of a small world analysis for the continuous monitoring of behavior in mice. Neurosci Biobehav Rev. 2022; 136:104621.
DOI: 10.1016/j.neubiorev.2022.104621.
View
11.
Geuther B, Chen M, Galante R, Han O, Lian J, George J
. High-throughput visual assessment of sleep stages in mice using machine learning. Sleep. 2021; 45(2).
PMC: 8842275.
DOI: 10.1093/sleep/zsab260.
View
12.
Salem G, Krynitsky J, Hayes M, Pohida T, Burgos-Artizzu X
. Three-Dimensional Pose Estimation for Laboratory Mouse From Monocular Images. IEEE Trans Image Process. 2019; 28(9):4273-4287.
PMC: 6677238.
DOI: 10.1109/TIP.2019.2908796.
View
13.
Huang L, Zhao X, Huang K
. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild. IEEE Trans Pattern Anal Mach Intell. 2019; 43(5):1562-1577.
DOI: 10.1109/TPAMI.2019.2957464.
View
14.
Wu Y, Lim J, Yang M
. Object Tracking Benchmark. IEEE Trans Pattern Anal Mach Intell. 2015; 37(9):1834-48.
DOI: 10.1109/TPAMI.2014.2388226.
View
15.
Taleb A, Rohrer C, Bergner B, De Leon G, Rodrigues J, Schwendicke F
. Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification. Diagnostics (Basel). 2022; 12(5).
PMC: 9140204.
DOI: 10.3390/diagnostics12051237.
View
16.
Viglione A, Sagona G, Carrara F, Amato G, Totaro V, Lupori L
. Behavioral impulsivity is associated with pupillary alterations and hyperactivity in CDKL5 mutant mice. Hum Mol Genet. 2022; 31(23):4107-4120.
DOI: 10.1093/hmg/ddac164.
View
17.
Park I, Lee K, Bishayee K, Jeon H, Lee H, Lee U
. Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors. Exp Neurobiol. 2019; 28(1):54-61.
PMC: 6401551.
DOI: 10.5607/en.2019.28.1.54.
View
18.
Marks M, Qiuhan J, Sturman O, von Ziegler L, Kollmorgen S, von der Behrens W
. Deep-learning based identification, tracking, pose estimation, and behavior classification of interacting primates and mice in complex environments. Nat Mach Intell. 2022; 4(4):331-340.
PMC: 7612650.
DOI: 10.1038/s42256-022-00477-5.
View
19.
Wu X, Tao Y, He G, Liu D, Fan M, Yang S
. Boosting Multilabel Semantic Segmentation for Somata and Vessels in Mouse Brain. Front Neurosci. 2021; 15:610122.
PMC: 8071950.
DOI: 10.3389/fnins.2021.610122.
View
20.
Wang X, Zhang R, Shen C, Kong T, Li L
. SOLO: A Simple Framework for Instance Segmentation. IEEE Trans Pattern Anal Mach Intell. 2021; 44(11):8587-8601.
DOI: 10.1109/TPAMI.2021.3111116.
View