6.
Tan N, Wong K, Tan C
. Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. J Proteomics. 2017; 157:18-32.
DOI: 10.1016/j.jprot.2017.01.018.
View
7.
Durban J, Perez A, Sanz L, Gomez A, Bonilla F, Rodriguez S
. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013; 14:234.
PMC: 3660174.
DOI: 10.1186/1471-2164-14-234.
View
8.
Ki M, Pack S
. Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol. 2020; 104(6):2411-2425.
DOI: 10.1007/s00253-020-10402-8.
View
9.
Calvete J, Juarez P, Sanz L
. Snake venomics. Strategy and applications. J Mass Spectrom. 2007; 42(11):1405-14.
DOI: 10.1002/jms.1242.
View
10.
Kini R, Doley R
. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010; 56(6):855-67.
DOI: 10.1016/j.toxicon.2010.07.010.
View
11.
Khalek I, Senji Laxme R, Nguyen Y, Khochare S, Patel R, Woehl J
. Synthetic development of a broadly neutralizing antibody against snake venom long-chain α-neurotoxins. Sci Transl Med. 2024; 16(735):eadk1867.
DOI: 10.1126/scitranslmed.adk1867.
View
12.
Emamipour N, Vossoughi M, Mahboudi F, Golkar M, Fard-Esfahani P
. Soluble expression of IGF1 fused to DsbA in SHuffle™ T7 strain: optimization of expression and purification by Box-Behnken design. Appl Microbiol Biotechnol. 2019; 103(8):3393-3406.
DOI: 10.1007/s00253-019-09719-w.
View
13.
Lechner M, Findeiss S, Steiner L, Marz M, Stadler P, Prohaska S
. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011; 12:124.
PMC: 3114741.
DOI: 10.1186/1471-2105-12-124.
View
14.
Perry B, Gopalan S, Pasquesi G, Schield D, Westfall A, Smith C
. Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways. Genome Res. 2022; 32(6):1058-1073.
PMC: 9248877.
DOI: 10.1101/gr.276251.121.
View
15.
Chavda V, Soni S, Vora L, Soni S, Khadela A, Ajabiya J
. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel). 2022; 10(12).
PMC: 9785933.
DOI: 10.3390/vaccines10122150.
View
16.
Krizaj I
. Toxinology and Pharmacology of Snake Venoms. Toxins (Basel). 2023; 15(3).
PMC: 10051782.
DOI: 10.3390/toxins15030212.
View
17.
Quiroz S, Henao Castaneda I, Granados J, Patino A, Preciado L, Pereanez J
. Inhibitory Effects of Varespladib, CP471474, and Their Potential Synergistic Activity on and Venoms. Molecules. 2022; 27(23).
PMC: 9737558.
DOI: 10.3390/molecules27238588.
View
18.
Hogan M, Holding M, Nystrom G, Colston T, Bartlett D, Mason A
. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci U S A. 2024; 121(16):e2313440121.
PMC: 11032440.
DOI: 10.1073/pnas.2313440121.
View
19.
Preciado L, Pereanez J, Azhagiya Singam E, Comer J
. Interactions between Triterpenes and a P-I Type Snake Venom Metalloproteinase: Molecular Simulations and Experiments. Toxins (Basel). 2018; 10(10).
PMC: 6215199.
DOI: 10.3390/toxins10100397.
View
20.
Julve Parreno J, Huet E, Fernandez-Del-Carmen A, Segura A, Venturi M, Gandia A
. A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins. Plant Biotechnol J. 2017; 16(3):727-736.
PMC: 5814581.
DOI: 10.1111/pbi.12823.
View