CRGD-Conjugated Bilirubin Nanoparticles Alleviate Dry Eye Disease Via Activating the PINK1-Mediated Mitophagy
Overview
Authors
Affiliations
Purpose: The purpose of this study was to evaluate the cytoprotective effect and the mechanism of cRGD-conjugated bilirubin nanoparticles (cNPs@BR) in dry eye disease (DED).
Methods: The binding capacity and cellular uptake of cNPs@BR in human corneal epithelial cells (HCECs) were assessed by immunofluorescence. The anti-inflammation and anti-oxidative stress effects of cNPs@BR were determined by flow cytometry, immunofluorescence, Western blot, chromatin immunoprecipitation (ChIP), and ELISA assay in LPS-stimulated RAW264.7 cells and hypertonic HCECs. The function of ocular surface barrier, tear production, and the number of goblet cells after cNPs@BR treatment were further assessed by fluorescein sodium staining, phenol red cotton threads, quantitative PCR (qPCR), hematoxylin and eosin (H&E) staining, and Periodic Acid-Schiff (PAS) staining in a 0.2% BAC-induced DED mouse model. Furthermore, the mechanism of cNPs@BR in treating DED was explored by RNA sequencing and RNA interference.
Results: The cRGD peptide prolonged the retention time of nanoparticles on HCECs and enhanced the cellular uptake efficiency. In both cell models, 20 µM cNPs@BR pretreatment ameliorated oxidative stress by decreasing the intracellular reactive oxygen species (ROS) levels and the expression of NOX4 and 4-HNE, while promoting HO-1 and nuclear Nrf2 levels. Moreover, cNPs@BR alleviated the inflammatory response by inhibiting NF-κB p65 nuclear translocation and decreasing the expression of iNOS and the secretion of IL-1β, IL-6, and TNF-α. In addition, cNPs@BR protected ocular surface epithelium against oxidative stress and inflammation and restored conjunctival goblet cells in the mouse model of DED by activating PINK1-mediated mitophagy.
Conclusions: The cNPs@BR suppressed oxidative stress and inflammatory response in the ocular surface epithelium and restored goblet cells by activating PINK1-mediated mitophagy.