6.
Li K, Jacob D, Liao H, Qiu Y, Shen L, Zhai S
. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc Natl Acad Sci U S A. 2021; 118(10).
PMC: 7958175.
DOI: 10.1073/pnas.2015797118.
View
7.
Wang N, Xu J, Pei C, Tang R, Zhou D, Chen Y
. Air Quality During COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China. Environ Sci Technol. 2021; 55(9):5721-5730.
DOI: 10.1021/acs.est.0c08383.
View
8.
Zhang Y, Cooper O, Gaudel A, Nedelec P, Ogino S, Thompson A
. Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nat Geosci. 2020; 9(12):875-879.
PMC: 7591124.
DOI: 10.1038/NGEO2827.
View
9.
Iglesias V, Balch J, Travis W
. U.S. fires became larger, more frequent, and more widespread in the 2000s. Sci Adv. 2022; 8(11):eabc0020.
PMC: 8926334.
DOI: 10.1126/sciadv.abc0020.
View
10.
Liu N, He G, Wang H, He C, Wang H, Liu C
. Rising frequency of ozone-favorable synoptic weather patterns contributes to 2015-2022 ozone increase in Guangzhou. J Environ Sci (China). 2024; 148:502-514.
DOI: 10.1016/j.jes.2023.09.024.
View
11.
Bonell A, Sonko B, Badjie J, Samateh T, Saidy T, Sosseh F
. Environmental heat stress on maternal physiology and fetal blood flow in pregnant subsistence farmers in The Gambia, west Africa: an observational cohort study. Lancet Planet Health. 2022; 6(12):e968-e976.
PMC: 9756110.
DOI: 10.1016/S2542-5196(22)00242-X.
View
12.
Cooper M, Martin R, Hammer M, Levelt P, Veefkind P, Lamsal L
. Global fine-scale changes in ambient NO during COVID-19 lockdowns. Nature. 2022; 601(7893):380-387.
PMC: 8770130.
DOI: 10.1038/s41586-021-04229-0.
View
13.
Jaff D, Cooper O, Fiore A, Henderson B, Tonnesen G, Russell A
. Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa (Wash D C). 2018; 6(1):56.
PMC: 6198683.
DOI: 10.1525/elementa.309.
View
14.
Cooper O, Langford A, Parrish D, Fahey D
. Atmosphere. Challenges of a lowered U.S. ozone standard. Science. 2015; 348(6239):1096-7.
DOI: 10.1126/science.aaa5748.
View
15.
Simon H, Reff A, Wells B, Xing J, Frank N
. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ Sci Technol. 2014; 49(1):186-95.
DOI: 10.1021/es504514z.
View
16.
Koplitz S, Simon H, Henderson B, Liljegren J, Tonnesen G, Whitehill A
. Changes in Ozone Chemical Sensitivity in the United States from 2007 to 2016. ACS Environ Au. 2022; 2(3):206-222.
PMC: 9371464.
DOI: 10.1021/acsenvironau.1c00029.
View
17.
Li K, Jacob D, Liao H, Shen L, Zhang Q, Bates K
. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proc Natl Acad Sci U S A. 2019; 116(2):422-427.
PMC: 6329973.
DOI: 10.1073/pnas.1812168116.
View
18.
Le T, Wang Y, Liu L, Yang J, Yung Y, Li G
. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science. 2020; 369(6504):702-706.
PMC: 7402623.
DOI: 10.1126/science.abb7431.
View
19.
Parrish D, Derwent R, Faloona I
. Long-term baseline ozone changes in the Western US: A synthesis of analyses. J Air Waste Manag Assoc. 2021; 71(11):1397-1406.
DOI: 10.1080/10962247.2021.1945706.
View
20.
Feng Z, Xu Y, Kobayashi K, Dai L, Zhang T, Agathokleous E
. Ozone pollution threatens the production of major staple crops in East Asia. Nat Food. 2023; 3(1):47-56.
DOI: 10.1038/s43016-021-00422-6.
View