6.
Fogo G, Anzell A, Maheras K, Raghunayakula S, Wider J, Emaus K
. Machine learning-based classification of mitochondrial morphology in primary neurons and brain. Sci Rep. 2021; 11(1):5133.
PMC: 7933342.
DOI: 10.1038/s41598-021-84528-8.
View
7.
Mages B, Aleithe S, Altmann S, Blietz A, Nitzsche B, Barthel H
. Impaired Neurofilament Integrity and Neuronal Morphology in Different Models of Focal Cerebral Ischemia and Human Stroke Tissue. Front Cell Neurosci. 2018; 12:161.
PMC: 6015914.
DOI: 10.3389/fncel.2018.00161.
View
8.
Yamashiro K, Liu J, Matsumoto N, Ikegaya Y
. Deep Learning-Based Classification of GAD67-Positive Neurons Without the Immunosignal. Front Neuroanat. 2021; 15:643067.
PMC: 8044854.
DOI: 10.3389/fnana.2021.643067.
View
9.
Li Z, Butler E, Li K, Lu A, Ji S, Zhang S
. Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality. Neuroinformatics. 2018; 16(3-4):339-349.
DOI: 10.1007/s12021-018-9361-5.
View
10.
Colombo G, Cubero R, Kanari L, Venturino A, Schulz R, Scolamiero M
. A tool for mapping microglial morphology, morphOMICs, reveals brain-region and sex-dependent phenotypes. Nat Neurosci. 2022; 25(10):1379-1393.
PMC: 9534764.
DOI: 10.1038/s41593-022-01167-6.
View
11.
Ye M, Shen J, Lin G, Xiang T, Shao L, Hoi S
. Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Trans Pattern Anal Mach Intell. 2021; 44(6):2872-2893.
DOI: 10.1109/TPAMI.2021.3054775.
View
12.
Uylings H, van Pelt J
. Measures for quantifying dendritic arborizations. Network. 2002; 13(3):397-414.
View
13.
Rapti G
. Open Frontiers in Neural Cell Type Investigations; Lessons From and Beyond, Toward a Multimodal Integration. Front Neurosci. 2022; 15:787753.
PMC: 8934944.
DOI: 10.3389/fnins.2021.787753.
View
14.
Zhao J, Chen X, Xiong Z, Zha Z, Wu F
. Graph Representation Learning for Large-Scale Neuronal Morphological Analysis. IEEE Trans Neural Netw Learn Syst. 2022; 35(4):5461-5472.
DOI: 10.1109/TNNLS.2022.3204686.
View
15.
Gillette T, Ascoli G
. Topological characterization of neuronal arbor morphology via sequence representation: I--motif analysis. BMC Bioinformatics. 2015; 16():216.
PMC: 4496917.
DOI: 10.1186/s12859-015-0604-2.
View
16.
Hernandez-Perez L, Delgado-Castillo D, Martin-Perez R, Orozco-Morales R, Lorenzo-Ginori J
. New Features for Neuron Classification. Neuroinformatics. 2018; 17(1):5-25.
DOI: 10.1007/s12021-018-9374-0.
View
17.
Zhang Y, Jiang S, Xu Z, Gong H, Li A, Luo Q
. Pinpointing Morphology and Projection of Excitatory Neurons in Mouse Visual Cortex. Front Neurosci. 2019; 13:912.
PMC: 6727359.
DOI: 10.3389/fnins.2019.00912.
View
18.
Stockley E, Cole H, Brown A, Wheal H
. A system for quantitative morphological measurement and electronic modelling of neurons: three-dimensional reconstruction. J Neurosci Methods. 1993; 47(1-2):39-51.
DOI: 10.1016/0165-0270(93)90020-r.
View
19.
Ascoli G, Donohue D, Halavi M
. NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci. 2007; 27(35):9247-51.
PMC: 6673130.
DOI: 10.1523/JNEUROSCI.2055-07.2007.
View
20.
Gillette T, Hosseini P, Ascoli G
. Topological characterization of neuronal arbor morphology via sequence representation: II--global alignment. BMC Bioinformatics. 2015; 16:209.
PMC: 4491275.
DOI: 10.1186/s12859-015-0605-1.
View