Bissaro B, Varnai A, Rohr A, Eijsink V
Microbiol Mol Biol Rev. 2018; 82(4).
PMID: 30257993
PMC: 6298611.
DOI: 10.1128/MMBR.00029-18.
Kim H, Yoon C, Ham H, Seok Y, Park Y
Front Microbiol. 2018; 9:1112.
PMID: 29896177
PMC: 5987630.
DOI: 10.3389/fmicb.2018.01112.
Pothiraj C, Kanmani P, Balaji P
Mycobiology. 2013; 34(4):159-65.
PMID: 24039492
PMC: 3769567.
DOI: 10.4489/MYCO.2006.34.4.159.
Son Y, Kim H, Thiyagarajan S, Xu J, Park S
Mycobiology. 2013; 40(4):258-62.
PMID: 23323052
PMC: 3538974.
DOI: 10.5941/MYCO.2012.40.4.258.
Syed K, Yadav J
Crit Rev Microbiol. 2012; 38(4):339-63.
PMID: 22624627
PMC: 3567848.
DOI: 10.3109/1040841X.2012.682050.
Constitutive expression of a fungal glucose oxidase gene in transgenic tobacco confers chilling tolerance through the activation of antioxidative defence system.
Maruthasalam S, Liu Y, Sun C, Chen P, Yu C, Lee P
Plant Cell Rep. 2010; 29(9):1035-48.
PMID: 20574842
DOI: 10.1007/s00299-010-0889-6.
Effect of nutrition factors on the synthesis of superoxide dismutase, catalase, and membrane lipid peroxide levels in Cordyceps militaris mycelium.
Wang Z, Gu Y, Yuan Q
Curr Microbiol. 2006; 52(1):74-9.
PMID: 16392009
DOI: 10.1007/s00284-005-0193-9.
Pyranose Oxidase, a Major Source of H(2)O(2) during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida.
Daniel G, Volc J, Kubatova E
Appl Environ Microbiol. 1994; 60(7):2524-32.
PMID: 16349330
PMC: 201679.
DOI: 10.1128/aem.60.7.2524-2532.1994.
Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus Bjerkandera sp. Strain BOS55.
de Jong E, Cazemier A, Field J, de Bont J
Appl Environ Microbiol. 1994; 60(1):271-7.
PMID: 16349157
PMC: 201299.
DOI: 10.1128/aem.60.1.271-277.1994.
Effects of Kraft Pulp and Lignin on Trametes versicolor Carbon Metabolism.
Roy B, Archibald F
Appl Environ Microbiol. 1993; 59(6):1855-63.
PMID: 16348963
PMC: 182172.
DOI: 10.1128/aem.59.6.1855-1863.1993.
Ultrastructural and Immunocytochemical Studies on the H(2)O(2)-Producing Enzyme Pyranose Oxidase in Phanerochaete chrysosporium Grown under Liquid Culture Conditions.
Daniel G, Volc J, Kubatova E, Nilsson T
Appl Environ Microbiol. 1992; 58(11):3667-76.
PMID: 16348809
PMC: 183159.
DOI: 10.1128/aem.58.11.3667-3676.1992.
Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium.
Yoshida M, Igarashi K, Wada M, Kaneko S, Suzuki N, Matsumura H
Appl Environ Microbiol. 2005; 71(8):4548-55.
PMID: 16085848
PMC: 1183321.
DOI: 10.1128/AEM.71.8.4548-4555.2005.
A new glucose oxidase from Aspergillus niger: characterization and regulation studies of enzyme and gene.
Hatzinikolaou D, Hansen O, Macris B, TINGEY A, Kekos D, Goodenough P
Appl Microbiol Biotechnol. 1996; 46(4):371-81.
PMID: 8987726
DOI: 10.1007/BF00166232.
Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium.
Gold M, Alic M
Microbiol Rev. 1993; 57(3):605-22.
PMID: 8246842
PMC: 372928.
DOI: 10.1128/mr.57.3.605-622.1993.
Role of mycelium and extracellular protein in the biodegradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium.
Armenante P, Pal N, Lewandowski G
Appl Environ Microbiol. 1994; 60(6):1711-8.
PMID: 8031074
PMC: 201552.
DOI: 10.1128/aem.60.6.1711-1718.1994.
Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium.
Kersten P, Kirk T
J Bacteriol. 1987; 169(5):2195-201.
PMID: 3553159
PMC: 212128.
DOI: 10.1128/jb.169.5.2195-2201.1987.
Nitrogen-deregulated mutants of Phanerochaete chrysosporium--a lignin-degrading basidiomycete.
Boominathan K, Dass S, Randall T, Reddy C
Arch Microbiol. 1990; 153(6):521-7.
PMID: 2369262
DOI: 10.1007/BF00245259.
Lignin peroxidase-negative mutant of the white-rot basidiomycete Phanerochaete chrysosporium.
Boominathan K, Dass S, Randall T, Kelley R, Reddy C
J Bacteriol. 1990; 172(1):260-5.
PMID: 2294087
PMC: 208426.
DOI: 10.1128/jb.172.1.260-265.1990.