6.
Tyler N, Mosquera-Lopez C, Young G, Youssef J, Castle J, Jacobs P
. Quantifying the impact of physical activity on future glucose trends using machine learning. iScience. 2022; 25(3):103888.
PMC: 8889374.
DOI: 10.1016/j.isci.2022.103888.
View
7.
Shi M, Yang A, Lau E, Luk A, Ma R, Kong A
. A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study. PLoS Med. 2024; 21(4):e1004369.
PMC: 11014435.
DOI: 10.1371/journal.pmed.1004369.
View
8.
Ling S, San P, Nguyen H
. Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes. ISA Trans. 2016; 64:440-446.
DOI: 10.1016/j.isatra.2016.05.008.
View
9.
Preston F, Meng Y, Burgess J, Ferdousi M, Azmi S, Petropoulos I
. Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes. Diabetologia. 2021; 65(3):457-466.
PMC: 8803718.
DOI: 10.1007/s00125-021-05617-x.
View
10.
. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2024. Diabetes Care. 2023; 47(Suppl 1):S231-S243.
PMC: 10725803.
DOI: 10.2337/dc24-S012.
View
11.
Chow L, Zmora R, Ma S, Seaquist E, Schreiner P
. Development of a model to predict 5-year risk of severe hypoglycemia in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2018; 6(1):e000527.
PMC: 6091902.
DOI: 10.1136/bmjdrc-2018-000527.
View
12.
Cichosz S, Frystyk J, Tarnow L, Fleischer J
. Combining information of autonomic modulation and CGM measurements enables prediction and improves detection of spontaneous hypoglycemic events. J Diabetes Sci Technol. 2014; 9(1):132-7.
PMC: 4495539.
DOI: 10.1177/1932296814549830.
View
13.
Salahouddin T, Petropoulos I, Ferdousi M, Ponirakis G, Asghar O, Alam U
. Artificial Intelligence-Based Classification of Diabetic Peripheral Neuropathy From Corneal Confocal Microscopy Images. Diabetes Care. 2021; 44(7):e151-e153.
PMC: 8323170.
DOI: 10.2337/dc20-2012.
View
14.
Schroeder E, Xu S, Goodrich G, Nichols G, OConnor P, Steiner J
. Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: Development and external validation of a prediction model. J Diabetes Complications. 2017; 31(7):1158-1163.
PMC: 5516886.
DOI: 10.1016/j.jdiacomp.2017.04.004.
View
15.
Wu C, Lin T, Lin C, Hwang D
. The future application of artificial intelligence and telemedicine in the retina: A perspective. Taiwan J Ophthalmol. 2023; 13(2):133-141.
PMC: 10361422.
DOI: 10.4103/tjo.TJO-D-23-00028.
View
16.
Baskozos G, Themistocleous A, Hebert H, Pascal M, John J, Callaghan B
. Classification of painful or painless diabetic peripheral neuropathy and identification of the most powerful predictors using machine learning models in large cross-sectional cohorts. BMC Med Inform Decis Mak. 2022; 22(1):144.
PMC: 9150351.
DOI: 10.1186/s12911-022-01890-x.
View
17.
Lundberg S, Erion G, Chen H, DeGrave A, Prutkin J, Nair B
. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat Mach Intell. 2020; 2(1):56-67.
PMC: 7326367.
DOI: 10.1038/s42256-019-0138-9.
View
18.
Berikov V, Kutnenko O, Semenova J, Klimontov V
. Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes. J Pers Med. 2022; 12(8).
PMC: 9409948.
DOI: 10.3390/jpm12081262.
View
19.
Topol E
. Machines and empathy in medicine. Lancet. 2023; 402(10411):1411.
DOI: 10.1016/S0140-6736(23)02292-4.
View
20.
Goodman K, Sarullo K, Swamidass S, Gaut J, Jain S
. Role of Artificial Intelligence in Kidney Pathology: Promises and Pitfalls. Kidney360. 2024; 5(7):1044-1046.
PMC: 11296536.
DOI: 10.34067/KID.0000000000000482.
View