6.
Hou K, Wu Z, Chen X, Wang J, Zhang D, Xiao C
. Microbiota in health and diseases. Signal Transduct Target Ther. 2022; 7(1):135.
PMC: 9034083.
DOI: 10.1038/s41392-022-00974-4.
View
7.
Huang Y, Anderle P, Bussey K, Barbacioru C, Shankavaram U, Dai Z
. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res. 2004; 64(12):4294-301.
DOI: 10.1158/0008-5472.CAN-03-3884.
View
8.
Welch J, Rossetti B, Rieken C, Dewhirst F, Borisy G
. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A. 2016; 113(6):E791-800.
PMC: 4760785.
DOI: 10.1073/pnas.1522149113.
View
9.
Jagt J, Struys E, Ayada I, Bakkali A, Jansen E, Claesen J
. Fecal Amino Acid Analysis in Newly Diagnosed Pediatric Inflammatory Bowel Disease: A Multicenter Case-Control Study. Inflamm Bowel Dis. 2021; 28(5):755-763.
PMC: 9074868.
DOI: 10.1093/ibd/izab256.
View
10.
Guo C, Che X, Briese T, Ranjan A, Allicock O, Yates R
. Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS. Cell Host Microbe. 2023; 31(2):288-304.e8.
PMC: 10183837.
DOI: 10.1016/j.chom.2023.01.004.
View
11.
Ni J, Shen T, Chen E, Bittinger K, Bailey A, Roggiani M
. A role for bacterial urease in gut dysbiosis and Crohn's disease. Sci Transl Med. 2017; 9(416).
PMC: 5808452.
DOI: 10.1126/scitranslmed.aah6888.
View
12.
Fernandes P, Sharma Y, Zulqarnain F, McGrew B, Shrivastava A, Ehsan L
. Identifying metabolic shifts in Crohn's disease using' omics-driven contextualized computational metabolic network models. Sci Rep. 2023; 13(1):203.
PMC: 9814625.
DOI: 10.1038/s41598-022-26816-5.
View
13.
Shaw C, Hess M, Weimer B
. Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues. Virulence. 2022; 13(1):1666-1680.
PMC: 9518994.
DOI: 10.1080/21505594.2022.2127196.
View
14.
Peschel S, Muller C, von Mutius E, Boulesteix A, Depner M
. NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform. 2020; 22(4).
PMC: 8293835.
DOI: 10.1093/bib/bbaa290.
View
15.
Dominguez-Bello M, Godoy-Vitorino F, Knight R, Blaser M
. Role of the microbiome in human development. Gut. 2019; 68(6):1108-1114.
PMC: 6580755.
DOI: 10.1136/gutjnl-2018-317503.
View
16.
Lewis J, Chen E, Baldassano R, Otley A, Griffiths A, Lee D
. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. Cell Host Microbe. 2015; 18(4):489-500.
PMC: 4633303.
DOI: 10.1016/j.chom.2015.09.008.
View
17.
Zelezniak A, Andrejev S, Ponomarova O, Mende D, Bork P, Patil K
. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci U S A. 2015; 112(20):6449-54.
PMC: 4443341.
DOI: 10.1073/pnas.1421834112.
View
18.
Nearing J, Douglas G, Hayes M, MacDonald J, Desai D, Allward N
. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun. 2022; 13(1):342.
PMC: 8763921.
DOI: 10.1038/s41467-022-28034-z.
View
19.
Beghini F, McIver L, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S
. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021; 10.
PMC: 8096432.
DOI: 10.7554/eLife.65088.
View
20.
Cappellato M, Baruzzo G, Di Camillo B
. Investigating differential abundance methods in microbiome data: A benchmark study. PLoS Comput Biol. 2022; 18(9):e1010467.
PMC: 9488820.
DOI: 10.1371/journal.pcbi.1010467.
View