6.
Zhao W, Abdelsattar M, Wang X, Zhang N, Chai J
. Modulation of Rumen Fermentation by Microbiota from the Recombination of Rumen Fluid and Solid Phases. Microbiol Spectr. 2022; 11(1):e0338722.
PMC: 9927485.
DOI: 10.1128/spectrum.03387-22.
View
7.
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G
. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018; 46(W1):W486-W494.
PMC: 6030889.
DOI: 10.1093/nar/gky310.
View
8.
Tan P, Liu H, Zhao J, Gu X, Wei X, Zhang X
. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci Total Environ. 2021; 800:149596.
DOI: 10.1016/j.scitotenv.2021.149596.
View
9.
Hassan F, Guo Y, Li M, Tang Z, Peng L, Liang X
. Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms. 2021; 9(8).
PMC: 8397988.
DOI: 10.3390/microorganisms9081717.
View
10.
Qiu Q, Wang L, Wang K, Yang Y, Ma T, Wang Z
. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat Commun. 2015; 6:10283.
PMC: 4703879.
DOI: 10.1038/ncomms10283.
View
11.
Lombard V, Ramulu H, Drula E, Coutinho P, Henrissat B
. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013; 42(Database issue):D490-5.
PMC: 3965031.
DOI: 10.1093/nar/gkt1178.
View
12.
Hagen L, Brooke C, Shaw C, Norbeck A, Piao H, Arntzen M
. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 2020; 15(2):421-434.
PMC: 8026616.
DOI: 10.1038/s41396-020-00769-x.
View
13.
Fu L, Niu B, Zhu Z, Wu S, Li W
. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28(23):3150-2.
PMC: 3516142.
DOI: 10.1093/bioinformatics/bts565.
View
14.
Harper L, Denmead O, Freney J, Byers F
. Direct measurements of methane emissions from grazing and feedlot cattle. J Anim Sci. 1999; 77(6):1392-401.
DOI: 10.2527/1999.7761392x.
View
15.
Du M, Yang C, Liang Z, Zhang J, Yang Y, Ahmad A
. Dietary Energy Levels Affect Carbohydrate Metabolism-Related Bacteria and Improve Meat Quality in the Muscle of Yak (). Front Vet Sci. 2021; 8:718036.
PMC: 8492897.
DOI: 10.3389/fvets.2021.718036.
View
16.
Yin J, Li Y, Tian Y, Zhou F, Ma J, Xia S
. Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs. Innovation (Camb). 2023; 4(5):100486.
PMC: 10448216.
DOI: 10.1016/j.xinn.2023.100486.
View
17.
Xu C, Liu W, Sun B, Zhang S, Zhang S, Yang Y
. Multi-Omics Analysis Reveals a Dependent Relationship Between Rumen Bacteria and Diet of Grass- and Grain-Fed Yaks. Front Microbiol. 2021; 12:642959.
PMC: 8377600.
DOI: 10.3389/fmicb.2021.642959.
View
18.
Guo W, Zhou M, Ma T, Bi S, Wang W, Zhang Y
. Survey of rumen microbiota of domestic grazing yak during different growth stages revealed novel maturation patterns of four key microbial groups and their dynamic interactions. Anim Microbiome. 2021; 2(1):23.
PMC: 7807461.
DOI: 10.1186/s42523-020-00042-8.
View
19.
Bickhart D, Weimer P
. Symposium review: Host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows. J Dairy Sci. 2017; 101(8):7680-7689.
DOI: 10.3168/jds.2017-13328.
View
20.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J
. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2013; 1(1):18.
PMC: 3626529.
DOI: 10.1186/2047-217X-1-18.
View