» Articles » PMID: 39571453

Identification and Validation of MiR-21 Key Genes in Cervical Cancer Through an Integrated Bioinformatics Approach

Overview
Publisher Elsevier
Date 2024 Nov 21
PMID 39571453
Authors
Affiliations
Soon will be listed here.
Abstract

Cervical cancer is one of the most prevalent female reproductive cancers. miR-21 is a multi-target oncomiR that has shown its potential in regulating several cancers including colon, pancreatic, breast, prostate, ovarian, and cervical cancer. However, the signaling network of miR-21 remains underexplored, and only a limited number of miR-21 gene targets in cervical cancer have been reported. In this context, the present study was undertaken to evaluate the role of miR-21 in cervical cancer by combining in silico analysis with in vitro validation in cervical cancer cells. The miR-21 target genes were predicted using four different prediction tools: miRWalk, DIANA, miRDB, and TargetScan. A total of 113 overlapping target genes, common in at least three of the prediction tools, were shortlisted and subjected to functional enrichment analysis. The analysis predicted that JAK-STAT, MAPK, neurotrophin, and Ras signaling pathways are significantly (p≤0.05) targeted by miR-21. The MCODE plugin identified the potential cluster in the protein-protein interaction network based on the highest degree of connectivity. After GEPIA2 validation of all 20 hub genes, NTF3, LIFR, and IL-6R were shortlisted for validation in cervical cancer cell lines. The results showed that NTF3, LIFR, and IL-6R were significantly upregulated in the miR-21 knockdown CaSki cell lines in 6.27, 1.92 and 1.71 folds (p≤0.01), respectively. Similarly, in HeLa cell lines expression of NTF3, LIFR, and IL-6R were overexpressed in 4.06, 5.65, 2.42 folds (p≤0.001), respectively. Findings of the study was confirming the role of miR-21 in regulating the expression of these genes. Additionally, the knockdown of miR-21 significantly inhibited the secretion of matrix metalloproteinases by CaSki cells. These results highlight that miR-21 could be a potential therapeutic target for cervical cancer, although further preclinical and clinical studies are required to validate its role and efficacy.