6.
Coines J, Raich L, Rovira C
. Modeling catalytic reaction mechanisms in glycoside hydrolases. Curr Opin Chem Biol. 2019; 53:183-191.
DOI: 10.1016/j.cbpa.2019.09.007.
View
7.
Morais M, Coines J, Domingues M, Pirolla R, Tonoli C, Santos C
. Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by X-ray and QM/MM simulations. Nat Commun. 2021; 12(1):367.
PMC: 7809346.
DOI: 10.1038/s41467-020-20620-3.
View
8.
Wardman J, Bains R, Rahfeld P, Withers S
. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 2022; 20(9):542-556.
DOI: 10.1038/s41579-022-00712-1.
View
9.
Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M
. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ Microbiol. 2011; 13(5):1253-70.
DOI: 10.1111/j.1462-2920.2011.02426.x.
View
10.
Raich L, Nin-Hill A, Ardevol A, Rovira C
. Enzymatic Cleavage of Glycosidic Bonds: Strategies on How to Set Up and Control a QM/MM Metadynamics Simulation. Methods Enzymol. 2016; 577:159-83.
DOI: 10.1016/bs.mie.2016.05.015.
View
11.
Navarro D, Stortz C
. Modeling ring puckering in strained systems: application to 3,6-anhydroglycosides. Carbohydr Res. 2005; 340(12):2030-8.
DOI: 10.1016/j.carres.2005.05.022.
View
12.
Davies G, Planas A, Rovira C
. Conformational analyses of the reaction coordinate of glycosidases. Acc Chem Res. 2011; 45(2):308-16.
DOI: 10.1021/ar2001765.
View
13.
Kuhne T, Iannuzzi M, Del Ben M, Rybkin V, Seewald P, Stein F
. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys. 2021; 152(19):194103.
DOI: 10.1063/5.0007045.
View
14.
Bussi G, Donadio D, Parrinello M
. Canonical sampling through velocity rescaling. J Chem Phys. 2007; 126(1):014101.
DOI: 10.1063/1.2408420.
View
15.
Sagiroglugil M, Yasar F
. Catalytic Reaction Mechanism of Bacterial GH92 α-1,2-Mannosidase: A QM/MM Metadynamics Study. Chemphyschem. 2023; 24(24):e202300628.
DOI: 10.1002/cphc.202300628.
View
16.
Wallace M, Cuxart I, Roret T, Guee L, Debowski A, Czjzek M
. Constrained Catalytic Itinerary of a Retaining 3,6-Anhydro-D-Galactosidase, a Key Enzyme in Red Algal Cell Wall Degradation. Angew Chem Int Ed Engl. 2024; 63(43):e202411171.
DOI: 10.1002/anie.202411171.
View
17.
Iglesias-Fernandez J, Raich L, Ardevol A, Rovira C
. The complete conformational free energy landscape of β-xylose reveals a two-fold catalytic itinerary for β-xylanases. Chem Sci. 2018; 6(2):1167-1177.
PMC: 5811086.
DOI: 10.1039/c4sc02240h.
View
18.
Fu X, Kim S
. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs. 2010; 8(1):200-18.
PMC: 2817930.
DOI: 10.3390/md8010200.
View
19.
Goedecker , Teter , HUTTER
. Separable dual-space Gaussian pseudopotentials. Phys Rev B Condens Matter. 1996; 54(3):1703-1710.
DOI: 10.1103/physrevb.54.1703.
View
20.
Macdonald S, Blaukopf M, Withers S
. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. J Biol Chem. 2014; 290(8):4887-4895.
PMC: 4335228.
DOI: 10.1074/jbc.M114.621110.
View