6.
Dziki J, Badylak S, Yabroudi M, Sicari B, Ambrosio F, Stearns K
. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med. 2018; 1:16008.
PMC: 5744714.
DOI: 10.1038/npjregenmed.2016.8.
View
7.
Piccoli M, Urbani L, Alvarez-Fallas M, Franzin C, Dedja A, Bertin E
. Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials. 2015; 74:245-55.
DOI: 10.1016/j.biomaterials.2015.10.005.
View
8.
Porzionato A, Sfriso M, Pontini A, Macchi V, Petrelli L, Pavan P
. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery. Int J Mol Sci. 2015; 16(7):14808-31.
PMC: 4519873.
DOI: 10.3390/ijms160714808.
View
9.
Gilbert T
. Strategies for tissue and organ decellularization. J Cell Biochem. 2012; 113(7):2217-22.
DOI: 10.1002/jcb.24130.
View
10.
Sedlackova T, Repiska G, Celec P, Szemes T, Minarik G
. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods. Biol Proced Online. 2013; 15(1):5.
PMC: 3576356.
DOI: 10.1186/1480-9222-15-5.
View
11.
Chaturvedi V, Dye D, Kinnear B, van Kuppevelt T, Grounds M, Coombe D
. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. PLoS One. 2015; 10(6):e0127675.
PMC: 4450880.
DOI: 10.1371/journal.pone.0127675.
View
12.
Terrie L, Philips C, Muylle E, Weisrock A, Lecomte-Grosbras P, Thorrez L
. Decellularized tissue exhibits large differences of extracellular matrix properties dependent on decellularization method: novel insights from a standardized characterization on skeletal muscle. Biofabrication. 2024; 16(2).
DOI: 10.1088/1758-5090/ad2c99.
View
13.
Singer V, Jones L, YUE S, Haugland R
. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem. 1997; 249(2):228-38.
DOI: 10.1006/abio.1997.2177.
View
14.
Casarin M, Fortunato T, Imran S, Todesco M, Sandrin D, Borile G
. Porcine Small Intestinal Submucosa (SIS) as a Suitable Scaffold for the Creation of a Tissue-Engineered Urinary Conduit: Decellularization, Biomechanical and Biocompatibility Characterization Using New Approaches. Int J Mol Sci. 2022; 23(5).
PMC: 8910833.
DOI: 10.3390/ijms23052826.
View
15.
Gillies A, Smith L, Lieber R, Varghese S
. Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng Part C Methods. 2010; 17(4):383-9.
PMC: 3065727.
DOI: 10.1089/ten.TEC.2010.0438.
View
16.
Schmitz T, Eren A, Spierings J, de Boer J, Ito K, Foolen J
. Solid-phase silica-based extraction leads to underestimation of residual DNA in decellularized tissues. Xenotransplantation. 2020; 28(1):e12643.
PMC: 9286341.
DOI: 10.1111/xen.12643.
View
17.
Philips C, Campos F, Roosens A, Sanchez-Quevedo M, Declercq H, Carriel V
. Qualitative and Quantitative Evaluation of a Novel Detergent-Based Method for Decellularization of Peripheral Nerves. Ann Biomed Eng. 2018; 46(11):1921-1937.
DOI: 10.1007/s10439-018-2082-y.
View
18.
Georgiou C, Papapostolou I
. Assay for the quantification of intact/fragmented genomic DNA. Anal Biochem. 2006; 358(2):247-56.
DOI: 10.1016/j.ab.2006.07.035.
View
19.
Roosens A, Somers P, De Somer F, Carriel V, Van Nooten G, Cornelissen R
. Impact of Detergent-Based Decellularization Methods on Porcine Tissues for Heart Valve Engineering. Ann Biomed Eng. 2016; 44(9):2827-39.
DOI: 10.1007/s10439-016-1555-0.
View
20.
Tsai W, Schedl M, Maley J, McCormack J
. More than skin and bones: Comparing extraction methods and alternative sources of DNA from avian museum specimens. Mol Ecol Resour. 2019; 20(5):1220-1227.
DOI: 10.1111/1755-0998.13077.
View