6.
Yildiz O, Kose B, Tanidir I, Pekkan K, Guzeltas A, Haydin S
. Single-center experience with routine clinical use of 3D technologies in surgical planning for pediatric patients with complex congenital heart disease. Diagn Interv Radiol. 2021; 27(4):488-496.
PMC: 8289433.
DOI: 10.5152/dir.2021.20163.
View
7.
Ruger C, Feufel M, Moosburner S, Ozbek C, Pratschke J, Sauer I
. Ultrasound in augmented reality: a mixed-methods evaluation of head-mounted displays in image-guided interventions. Int J Comput Assist Radiol Surg. 2020; 15(11):1895-1905.
PMC: 8332636.
DOI: 10.1007/s11548-020-02236-6.
View
8.
Byl J, Sholler R, Gosnell J, Samuel B, Vettukattil J
. Moving beyond two-dimensional screens to interactive three-dimensional visualization in congenital heart disease. Int J Cardiovasc Imaging. 2020; 36(8):1567-1573.
DOI: 10.1007/s10554-020-01853-1.
View
9.
Patel N, Costa A, Sanders S, Ezon D
. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021; 37(7):2283-2290.
DOI: 10.1007/s10554-021-02191-6.
View
10.
Brun H, Bugge R, Suther L, Birkeland S, Kumar R, Pelanis E
. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease. Eur Heart J Cardiovasc Imaging. 2018; 20(8):883-888.
DOI: 10.1093/ehjci/jey184.
View
11.
Mandalenakis Z, Giang K, Eriksson P, Liden H, Synnergren M, Wahlander H
. Survival in Children With Congenital Heart Disease: Have We Reached a Peak at 97%?. J Am Heart Assoc. 2020; 9(22):e017704.
PMC: 7763707.
DOI: 10.1161/JAHA.120.017704.
View
12.
Byrne N, Velasco Forte M, Tandon A, Valverde I, Hussain T
. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis. 2016; 5:2048004016645467.
PMC: 4853939.
DOI: 10.1177/2048004016645467.
View
13.
Yoo S, Thabit O, Kim E, Ide H, Yim D, Dragulescu A
. 3D printing in medicine of congenital heart diseases. 3D Print Med. 2018; 2(1):3.
PMC: 6036784.
DOI: 10.1186/s41205-016-0004-x.
View
14.
Liu Z, Knill D, Kersten D
. Object classification for human and ideal observers. Vision Res. 1995; 35(4):549-68.
DOI: 10.1016/0042-6989(94)00150-k.
View
15.
Gehrsitz P, Rompel O, Schober M, Cesnjevar R, Purbojo A, Uder M
. Cinematic Rendering in Mixed-Reality Holograms: A New 3D Preoperative Planning Tool in Pediatric Heart Surgery. Front Cardiovasc Med. 2021; 8:633611.
PMC: 7900175.
DOI: 10.3389/fcvm.2021.633611.
View
16.
Chessa M, Van De Bruaene A, Farooqi K, Valverde I, Jung C, Votta E
. Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: an exciting future. Eur Heart J. 2022; 43(28):2672-2684.
DOI: 10.1093/eurheartj/ehac266.
View
17.
Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte M, Byrne N
. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg. 2017; 52(6):1139-1148.
DOI: 10.1093/ejcts/ezx208.
View
18.
Sachdeva R, Armstrong A, Arnaout R, Grosse-Wortmann L, Han B, Mertens L
. Novel Techniques in Imaging Congenital Heart Disease: JACC Scientific Statement. J Am Coll Cardiol. 2024; 83(1):63-81.
PMC: 10947556.
DOI: 10.1016/j.jacc.2023.10.025.
View
19.
Fotaki A, Pushparajah K, Rush C, Munoz C, Velasco C, Neji R
. Highly efficient free-breathing 3D whole-heart imaging in 3-min: single center study in adults with congenital heart disease. J Cardiovasc Magn Reson. 2024; 26(1):100008.
PMC: 11211218.
DOI: 10.1016/j.jocmr.2023.100008.
View
20.
Giannopoulos A, Mitsouras D, Yoo S, Liu P, Chatzizisis Y, Rybicki F
. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016; 13(12):701-718.
DOI: 10.1038/nrcardio.2016.170.
View