6.
Chaabane M, Williams R, Stephens A, Park J
. circDeep: deep learning approach for circular RNA classification from other long non-coding RNA. Bioinformatics. 2019; 36(1):73-80.
PMC: 6956777.
DOI: 10.1093/bioinformatics/btz537.
View
7.
He W, Jia C, Zou Q
. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics. 2018; 35(4):593-601.
DOI: 10.1093/bioinformatics/bty668.
View
8.
Liu H, Li D, Wu H
. Lnclocator-imb: An Imbalance-tolerant Ensemble Deep Learning Framework for Predicting Long Non-coding RNA Subcellular Localization. IEEE J Biomed Health Inform. 2023; PP.
DOI: 10.1109/JBHI.2023.3324709.
View
9.
Chen Z, Zhao P, Li F, Marquez-Lago T, Leier A, Revote J
. iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief Bioinform. 2019; 21(3):1047-1057.
DOI: 10.1093/bib/bbz041.
View
10.
Hnatowich D, Layne W, Childs R, Lanteigne D, Davis M, Griffin T
. Radioactive labeling of antibody: a simple and efficient method. Science. 1983; 220(4597):613-5.
DOI: 10.1126/science.6836304.
View
11.
Yan Y, Jiang J, Fu M, Wang D, Pelletier A, Sigdel D
. MIND-S is a deep-learning prediction model for elucidating protein post-translational modifications in human diseases. Cell Rep Methods. 2023; 3(3):100430.
PMC: 10088250.
DOI: 10.1016/j.crmeth.2023.100430.
View
12.
Cohen P
. Protein phosphatase 1--targeted in many directions. J Cell Sci. 2002; 115(Pt 2):241-56.
DOI: 10.1242/jcs.115.2.241.
View
13.
Zou Q, Xing P, Wei L, Liu B
. Gene2vec: gene subsequence embedding for prediction of mammalian -methyladenosine sites from mRNA. RNA. 2018; 25(2):205-218.
PMC: 6348985.
DOI: 10.1261/rna.069112.118.
View
14.
Collas P
. The current state of chromatin immunoprecipitation. Mol Biotechnol. 2010; 45(1):87-100.
DOI: 10.1007/s12033-009-9239-8.
View
15.
Tsukiyama S, Hasan M, Fujii S, Kurata H
. LSTM-PHV: prediction of human-virus protein-protein interactions by LSTM with word2vec. Brief Bioinform. 2021; 22(6).
PMC: 8574953.
DOI: 10.1093/bib/bbab228.
View
16.
Wang C, Wu J, Xu L, Zou Q
. NonClasGP-Pred: robust and efficient prediction of non-classically secreted proteins by integrating subset-specific optimal models of imbalanced data. Microb Genom. 2020; 6(12).
PMC: 8116686.
DOI: 10.1099/mgen.0.000483.
View
17.
Iuchi H, Matsutani T, Yamada K, Iwano N, Sumi S, Hosoda S
. Representation learning applications in biological sequence analysis. Comput Struct Biotechnol J. 2021; 19:3198-3208.
PMC: 8190442.
DOI: 10.1016/j.csbj.2021.05.039.
View
18.
Hornbeck P, Zhang B, Murray B, Kornhauser J, Latham V, Skrzypek E
. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2014; 43(Database issue):D512-20.
PMC: 4383998.
DOI: 10.1093/nar/gku1267.
View
19.
Wang C, Ju Y, Zou Q, Lin C
. DeepAc4C: a convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA. Bioinformatics. 2021; 38(1):52-57.
DOI: 10.1093/bioinformatics/btab611.
View
20.
Tsukiyama S, Hasan M, Deng H, Kurata H
. BERT6mA: prediction of DNA N6-methyladenine site using deep learning-based approaches. Brief Bioinform. 2022; 23(2).
PMC: 8921755.
DOI: 10.1093/bib/bbac053.
View