6.
Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y
. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. 2021; 50(D1):D488-D496.
PMC: 8728287.
DOI: 10.1093/nar/gkab651.
View
7.
Mookherjee N, Anderson M, Haagsman H, Davidson D
. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020; 19(5):311-332.
DOI: 10.1038/s41573-019-0058-8.
View
8.
Sowers A, Wang G, Xing M, Li B
. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms. 2023; 11(5).
PMC: 10223199.
DOI: 10.3390/microorganisms11051129.
View
9.
Kedziora A, Wernecki M, Korzekwa K, Speruda M, Gerasymchuk Y, Lukowiak A
. Consequences Of Long-Term Bacteria's Exposure To Silver Nanoformulations With Different PhysicoChemical Properties. Int J Nanomedicine. 2020; 15:199-213.
PMC: 6970275.
DOI: 10.2147/IJN.S208838.
View
10.
Zasloff M
. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870):389-95.
DOI: 10.1038/415389a.
View
11.
Rajasekaran G, Kim E, Shin S
. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim Biophys Acta Biomembr. 2017; 1859(5):722-733.
DOI: 10.1016/j.bbamem.2017.01.037.
View
12.
Wang G, Hanke M, Mishra B, Lushnikova T, Heim C, Thomas V
. Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol. 2014; 9(9):1997-2002.
PMC: 4168778.
DOI: 10.1021/cb500475y.
View
13.
Mwangi J, Hao X, Lai R, Zhang Z
. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res. 2019; 40(6):488-505.
PMC: 6822926.
DOI: 10.24272/j.issn.2095-8137.2019.062.
View
14.
Zhang Z, Chen Y, Gao J, Yang M, Zhang D, Wang L
. Orientational Nanoconjugation with Gold Endows Marked Antimicrobial Potential and Drugability of Ultrashort Dipeptides. Nano Lett. 2023; 23(24):11874-11883.
PMC: 10755742.
DOI: 10.1021/acs.nanolett.3c03909.
View
15.
Kannappan A, Durgadevi R, Srinivasan R, Lagoa R, Packiavathy I, Pandian S
. 2-Hydroxy-4-methoxybenzaldehyde from is antagonistic to biofilm formation. Biofouling. 2020; 36(5):549-563.
DOI: 10.1080/08927014.2020.1777989.
View
16.
Deo S, Turton K, Kainth T, Kumar A, Wieden H
. Strategies for improving antimicrobial peptide production. Biotechnol Adv. 2022; 59:107968.
DOI: 10.1016/j.biotechadv.2022.107968.
View
17.
Lazzaro B, Zasloff M, Rolff J
. Antimicrobial peptides: Application informed by evolution. Science. 2020; 368(6490).
PMC: 8097767.
DOI: 10.1126/science.aau5480.
View
18.
Shahrour H, Ferrer-Espada R, Dandache I, Barcena-Varela S, Sanchez-Gomez S, Chokr A
. AMPs as Anti-biofilm Agents for Human Therapy and Prophylaxis. Adv Exp Med Biol. 2019; 1117:257-279.
DOI: 10.1007/978-981-13-3588-4_14.
View
19.
Wang Y, Zhang Z, Chen L, Guang H, Li Z, Yang H
. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris. PLoS One. 2011; 6(7):e22120.
PMC: 3137605.
DOI: 10.1371/journal.pone.0022120.
View
20.
Bobone S, Stella L
. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Adv Exp Med Biol. 2019; 1117:175-214.
DOI: 10.1007/978-981-13-3588-4_11.
View